

ETREM Nanomaterials

Includes
Surfactants
and Ligands
for Nano
Synthesis

High Surface Area Silica Nanoparticles

by Jean-Marie Basset and Pradeep Doggali

Table of Contents

Glossary of Terms	i
High Surface Area Fibrous Silica Nanoparticles(KCC-1)	
by Jean-Marie Basset and Pradeep Doggali.....	1-21
Nanomaterials Sorted by Key Element	22-55
Nanomaterials - Surfactants and Ligands for Nano Synthesis.....	55-57
Nanomaterial Kits	58-63

Strem Chemicals, Inc., established in 1964, is an employee-owned company that manufactures and markets specialty chemicals of high purity. Our clients include academic, industrial and government research and development laboratories as well as commercial scale businesses in the pharmaceutical, microelectronics, chemical and petrochemical industries.

As part of our ongoing commitment to quality, we have achieved ISO 9001 certification for the Quality Management System (QMS) at our corporate headquarters in Newburyport, Massachusetts.

Since 2004, we have manufactured a number of metal-based nanomaterials including clusters, colloids, particles and powders. These are produced by a variety of wet chemical means under patented processes. High-purity metal precursors as well as surfactants and ligands for nanomaterial synthesis are also available. In 2008, we expanded our US-based nanomaterials initiative and established a Nanochemistry Laboratory in Europe at the Institut de Science et d'Ingenierie Supramoleculaires at the University of Strasbourg, France. The European lab works closely with our U.S. headquarters. The goal of the European facility is to serve R&D groups worldwide with custom-made nanostructured materials.

At Strem, we also offer a wide variety of catalysts, ligands and CVD/ALD precursors. Quality is the most critical component of all of our products and services. Most products are of high purity, typically at 99%, while some are as high as 99.9999% metals purity. In addition, custom synthesis services are provided on a contract basis. For pharmaceutical applications, manufacturing is conducted under current Good Manufacturing Practices (cGMP) in FDA inspected kilo-lab suites. Complete documentation is available, including validation and stability studies. Active Drug Master Files (DMF's) are maintained in North America and Europe.

Please contact Strem for your custom nanomaterial requirements.

AVAILABLE BOOKLETS:

- Biocatalysts
- Buchwald Ligands and Precatalysts
- Carbon-Base Nanomaterials & Elemental Forms
- Catalysts & Ligands *Sold in Collaboration with Takasago*
- Chiral Phosphoric Acids
- Gold Elements & Compounds
- Heterogeneous Catalysts
- High Purity Chiral Reagents *Sold in Collaboration with Daicel*
- Kits
- Materials for Energy Applications
- Metal Catalysts for Organic Synthesis
- Metathesis Catalysts
- MOCVD, CVD & ALD Precursors
- MOFs and Ligands for MOF Synthesis
- Nanomaterials
- New Products
- Other Ligands
- Phosphorous Ligands and Compounds
- Photocatalysts
- PURATREM: High Purity Inorganics

Ephraim S. Honig, Ph.D., M.B.A
Chief Executive Officer

NANO 03/19

©2019 Strem Chemicals, Inc.

Glossary of Terms

[α]_D	Specific rotation
AAS	Atomic Absorption Standard
ACS	Conforms to American Chemical Society specifications
air sensitive	Product may chemically react with atmospheric oxygen or carbon dioxide at ambient conditions. Handle and store under an inert atmosphere of nitrogen or argon.
amp	Ampouled
b.p.	Boiling point in °C at 760mm, unless otherwise noted
d.	Density
dec.	Decomposes
elec. gr.	Electronic Grade, suitable for electronic applications
f.p.	Flash point in °F
gran.	Granular
heat sensitive	Product may chemically degrade if stored for prolonged periods of time at ambient temperatures or higher. Store at 5°C or lower.
hydrate	Unspecified water content which may vary slightly from lot to lot
hygroscopic	Product may absorb water if exposed to the atmosphere for prolonged periods of time (dependent on humidity and temperature). Handle and store under an inert atmosphere of nitrogen or argon.
light sensitive	Product may chemically degrade if exposed to light
liq.	Liquid
m.p.	Melting point in °C
moisture sensitive	Product may chemically react with water. Handle and store under an inert atmosphere of nitrogen or argon.
NMR grade	Suitable as a Nuclear Magnetic Resonance reference standard
optical grade	For optical applications
pwdr.	Powder
primary standard	Used to prepare reference standards and standardize volumetric solutions
PURATREM	Product has a minimum purity of 99.99% (metals basis)
purified	A grade higher than technical, often used where there are no official standards
P. Vol.	Pore volume
pyrophoric reagent	Product may spontaneously ignite if exposed to air at ambient conditions
	High purity material, generally used in the laboratory for detecting, measuring, examining or analyzing other substances
REO	Rare Earth Oxides. Purity of a specific rare-earth metal expressed as a percentage of total rare-earths oxides.
SA	Surface area
store cold	Product should be stored at -18°C or 4°C, unless otherwise noted (see product details)
subl.	Sublimes
superconductor grade	A high purity, analyzed grade, suitable for preparing superconductors
tech. gr.	Technical grade for general industrial use
TLC	Suitable for Thin Layer Chromatography
v.p.	Vapor pressure mm of Hg
xtl.	Crystalline

About Purity

Chemical purity	is reported after the chemical name, e.g. Ruthenium carbonyl, 99%
Metals purity	is reported in parentheses with the respective element, e.g. Gallium (III) bromide, anhydrous, granular (99.999%-Ga) PURATREM where 100% minus the metal purity is equal to the maximum allowable percentage of trace metal impurity

High Surface Area Fibrous Silica Nanoparticles (KCC-1)

Jean-Marie Basset and Pradeep Doggali

KAUST Catalysis Center

4700 King Abdullah University of Science & Technology (KAUST),
Thuwal 23955-6900, Saudi Arabia

Introduction

Given the growing demand for silica materials for various applications including catalysis, drug delivery, bio sensing, liquid chromatography, coating & paints, optically active materials, as well as in cosmetics, much research has been carried out to control the shape, structure, and pore-size leading to various types of mesoporous silica materials. However, the performance, and therefore the applicability, of mesoporous silica has been hindered by the limitation in accessibility to the active sites within the porous structure for many reasons, such as clogging of the pores by the sintering of active metals and also by accumulation of the carbonaceous by products inside the pores or at the external surface of porous materials. The morphology of the mesoporous silica could also influence the way drugs gets encapsulated and their subsequent release. Therefore, development and fabrication of novel silica materials with unique morphology that leads to high performances, which results in super efficiency is imperative to meet the emerging applications.

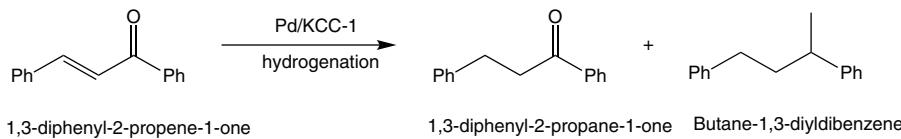
KAUST's novel fibrous silica nanospheres (KCC-1)^[1] offers a unique alternative shape, other than porosity, that has never before been seen in silica materials: a fibrous surface morphology arranged in three dimensional structure to form spheres. Unlike traditional pore-based silica, these nanospheres possess a fibrous structure that increases accessibility to most of the available surface area; this, for example, increases catalytic activity significantly. KCC-1 has been attracting the attention of researchers all over the world owing to its unique morphology and high surface area and therefore, making it ideal for use in a wide variety of catalytic reactions, sorbent and biological applications such as immobilization of enzymes and delivering DNAs.

A range of Nano catalysts synthesized using KCC-1 as a support have been showing excellent catalytic activity for various reactions of industrial importance. As a catalyst support/sorbent/carrier, KCC-1 has been demonstrating superior activity as compared to commercially available mesoporous silica materials such as MCM-41 and SBA-15. Some of these KCC-1 based materials and their corresponding reactions are included in Table.1.

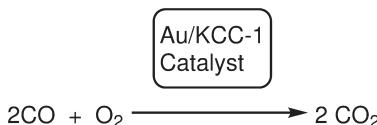

S.N	KCC-1 based material/catalyst/sorbent	Catalytic reaction/sorbent application/ carrier for DNAs and genes	Reference
1.	Tantalum hydride catalyst supported on KCC-1	Hydrometathesis of olefins	2
2.	Ruthenium (Ru) nanoparticles supported on KCC-1	Hydrogenolysis of Propane	3
3.	KCC-1 based silver nanocatalyst	Hydrogenation of dimethyl oxalate (DMO)	4
4.	Amine-functionalized KCC-1	CO ₂ Capture	5
5.	Nitridated KCC-1	Knoevenagel condensation and transesterification	6
6.	KCC-1 nanospheres	CO ₂ methanation	7
7.	KCC-1 supported Ag catalysts	CO oxidation	8
8.	Palladium nanoparticles supported on KCC-1	hydrogenation of alkenes and α,β-unsaturated carbonyl compounds	9
9.	KCC-1 nanoparticles	Synthesis of triazolo[1,2-a] indazole-triones	10
10.	Manganese (Mn) incorporated KCC-1	catalytic ozonation of oxalic acid	11
11.	Amine-grafted KCC-1	As a carrier to transport and deliver DNAs & genes	12
12.	Atomic layer deposited (ALD) TiO ₂ on KCC-1	Photocatalytic dye degradation	13

Table 1.

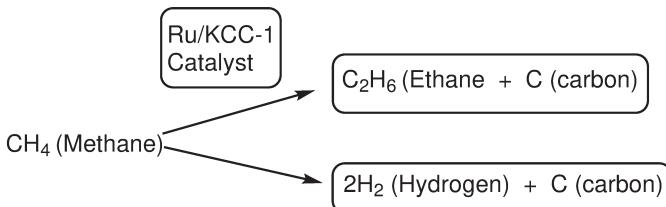
Our group at catalysis research center (KCC) of KAUST has been working on catalytic applications using KCC-1 for different reactions. Successful attempts have been made in studying KCC-1 based catalysts for olefin and alkane metathesis, C-C Coupling, H₂ production from natural gas, oxidation reactions and photocatalytic water splitting. Our research work on above mentioned application using KCC-1 is briefly discussed.


I) Hydro-metathesis of olefins

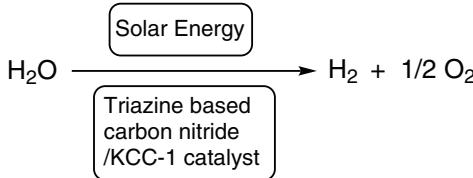
Hydro-metathesis is a catalytic reaction of transition metal hydride, which in the presence of hydrogen catalyzes the direct conversion of olefins into alkanes having higher and lower numbers of carbon atoms. In this work, Tantalum hydride grafted on KCC-1 transforms an olefin in the presence of hydrogen at moderate temperatures into the expected corresponding alkane, and also transforms the same olefin into alkanes having a higher and lower number of carbon atoms. The catalytic hydro-metathesis of propylene (1:1 mixture of olefin and hydrogen) was performed and compared with 1-butene hydro-metathesis on a micropilot equipped with a stainless steel reactor at atmospheric pressure at 150°C. The reactions proceeded efficiently with 37–40% conversion of propylene and 48–51% of 1-butene. In the case of propylene, in addition to the expected hydrogenation product propane, butane (35–40%) and ethane (40%) were the major products formed, with methane, iso-butane, and pentanes as the minor products. In case of 1-butene, major products formed include butane, propane (47–61%) and hexanes (13–25%) whereas ethane, propylene, pentanes, and heptanes formed as minor products. Remarkably, in both cases catalyst possessed high stability and regeneration ability^[2]. Graphical representation of the process is presented below.


II) Hydrogenation of alkenes

Hydrogenation of alkenes and α,β -unsaturated carbonyl compounds have been studied using an efficient KCC-1 based catalyst (palladium nanoparticles supported on KCC-1). This resulted excellent yields of the corresponding products with very high chemo-selectivity in the case of α,β -unsaturated carbonyl compounds. We have observed the superior performance of KCC-1 in comparison with commercial mesoporous silica supports like MCM-41 and SBA-15 under identical conditions. These results are attributed to superior accessibility of catalytically active sites along with high loading and excellent dispersion of palladium in case of KCC-1^[10].


III) Influence of metal particle (Au nanoparticles) size on catalytic CO oxidation

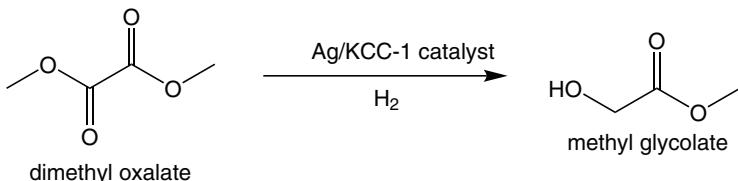
In order to study the possible advantage of using the fibrous nature of KCC-1, we synthesized gold nanoparticles (Au NPs) with different size and supporting them on KCC-1. The activity of the resulting catalysts was and tested for CO oxidation reaction. It is evidenced by the HR-TEM studies that the size and the location of the Au NPs on the support observed to be dependent on the method of synthesis. The catalytic activity of the Au NPs proved to be size dependent. We have also observed that larger Au NPs of Au/KCC-1-NH₂ were not able to penetrate the pores of KCC-1 and showed only limited catalytic activity. In this study, it was possible to place highly dispersed Au NPs with uniform size inside the fibers of KCC-1-NH₂ by grafting HAuCl₄ on Au/KCC-1-NH₂ followed by reduction^[14].


IV) Coupling of methane to ethane and hydrogen

We have developed a method to selectively produce hydrogen and ethane from methane by thermocatalytic decomposition of methane using Ru nanoparticles supported on Nano fibrous Silica (KCC-1) catalyst. These catalysts have been synthesized by post modification of KCC-1 with amine groups using APTs (3-aminopropyl triethoxysilane) followed by supporting nanoparticles on KCC-1. In this work, suitable temperatures and pressures have been found to produce a product having either hydrogen with solid carbon or ethane with solid carbon. The novelty of this approach also associated with the catalyst system that is efficient to produce the hydrogen and ethane as mentioned above with feed gas comprising less than 1000 ppm water. Also, the formation of hydrogen and ethane has not produced carbon dioxide (CO_2) but a just carbon. Based on the structure of the carbon (formed in this reaction), it can have applications as carbon graphite/ carbon fiber/ carbon nanotube^[15].

V) Photocatalytic water splitting

We have also been successful in utilizing fibrous nature of KCC-1 for photocatalytic reactions. Triazine-based carbon nitride (CN) synthesis in the presence of KCC-1, resulted in favorable effects to advance photocatalytic stability. The photocatalyst synthesized using this approach yielded a HER photocatalyst with a significant AQE of $22.1 \pm 3\%$ at 400 nm for solar to HER. The improved lifetime for the ground-state bleaching of the excited charge carriers was evidenced by time-resolved transient absorption spectroscopy. The synthesized CN/KCC-1 photocatalyst has been consistent with the higher photocatalytic performance than that of CN without KCC-1^[16].

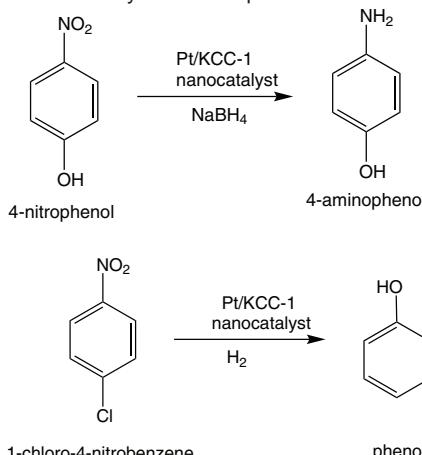


Experiments are also in progress to test KCC-1 for different industrially important reactions considering its superior performance as compared to conventional silica supports.

Several researchers all over the globe have successfully utilized KCC-1 for various applications after our discovery of KCC-1 in 2010. Therefore, work carried out by research groups from other institutions has been discussed to sum-up the highlights of some potential applications of KCC-1.

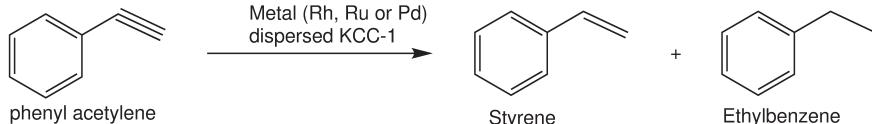
VI) Hydrogenation of dimethyl oxalate (DMO) to Methylene Glycol (MG)

Mengyao Ouyang et al. studied Ag/KCC-1 nanocatalyst for hydrogenation of dimethyl oxalate (DMO) to Methyl Glycolate (MG) and they compared the activity of Ag/KCC-1 with Ag/SBA-15 and Ag/MCM-41. The results showed that dispersion of metals was completely dependent on the nature silica support used, which results in different dispersion and accessibility of active sites. Authors concluded that KCC-1 with hierarchical pore channels has higher accessible internal surface area and therefore displays high catalytic activity^[4].

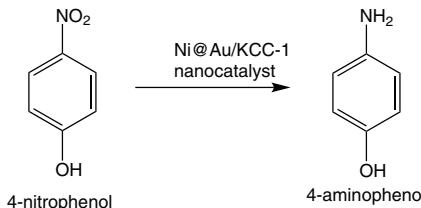


VII) Hydrogenation of functionalized aromatic compounds

M. Dhiman et al. synthesized ultrasmall platinum (Pt) nanoparticles on PEI (polyethylenimine) functionalized KCC-1 (KCC-1-PEI/Pt) and studied their activity for hydrogenation of 3-nitrostyrene. Authors observed an extraordinary selectivity for the said reaction and Pt (1%) supported on PEI functionalized KCC-1 was found to be selective towards reduction to 3-vinylaniline. On the other hand, 10% and 5% Pt loaded on KCC-1-PEI demonstrated high activity and selectivity towards 3-ethylaniline. It was observed that among studied catalysts KCC-1-PEI/Pt (1%) was found to be an efficient catalyst for the hydrogenation of a variety of substituted aromatic compounds. From obtained results it was described, how selectivity can be tuned just by changing the particle size of Pt nanoparticles. In this study, most active sites were observed to be subnanometer particles and pseudo-single atoms of Pt [17].

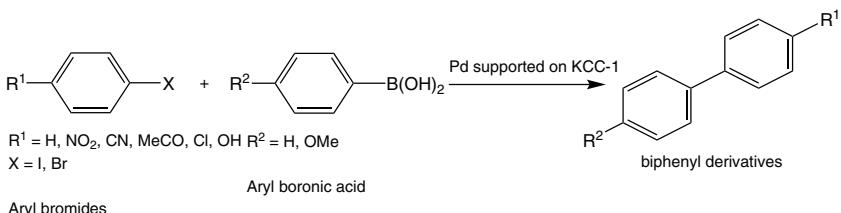


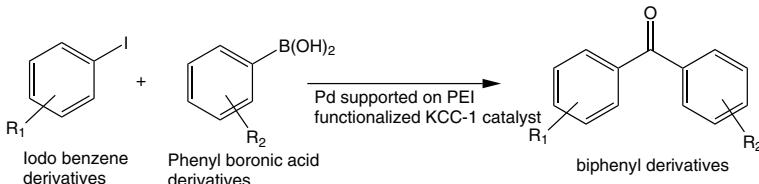
X. Le et al. investigated palladium supported KCC-1 catalyst for reduction of nitrophenols (4-NP) and hydrodechlorination of chlorophenols (4-CP). In order to synthesize catalysts, Pd precursor was added the functionalized KCC-1 followed by reduction with NaBH4. The Pd nanoparticles were well dispersed on fibers of KCC-1 and showed good catalytic activity for both the reactions. The higher catalytic activities was explained on the basis of morphological characteristics of the support which favors uniform dispersion and accessibility to Pd nanoparticles [18].



In another one of their studies, X. Le et al. have explored magnetically retrievable core-shell catalyst Pd/Fe3O4@SiO2@KCC-1. The catalytic performance of the synthesized catalyst was determined by reduction reaction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The reduction rate was more for Pd/Fe3O4@SiO2@KCC-1 as compared to Pd on other supports. The catalyst was also tested for Suzuki coupling reaction and found to have good stability and reusability (up to five cycles) [19]. M. Dhiman et al.

reported a facile way for synthesis of metal nanoparticles (Rh, Ru, Pd) supported on KCC-1, wherein they used PEI as a pseudochelator. Their studies revealed that the use of PEI had an edge over complex dendrimer, making the process relatively inexpensive. The catalytic activities of synthesized catalysts (KCC-1-PEI/Rh, KCC-1-PEI/Ru, and KCC-1-PEI/Pd) were tested for hydrogenation of phenylacetylene and styrene. The activity of KCC-1-PEI/Rh was more for both hydrogenation of phenylacetylene and styrene, as compared to that of KCC-1-PEI/Ru, and KCC-1-PEI/Pd. The difference in the activity of these catalysts was attributed to varying adsorption coefficients for the different metal atoms. The higher activities exhibited by studied catalysts was explained on the basis of easy accessibility to metal atoms with KCC-1 despite PEI infiltration. KCC-1-PEI/Rh and KCC-1-PEI/Ru also showed excellent stability, which was maintained almost up to five cycles without any deterioration^[20].

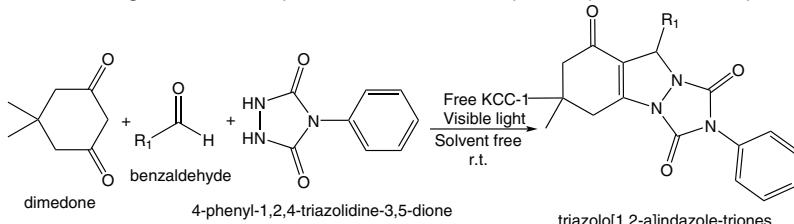

X. Le et al. also Studied Ni@Au core–shell nanoparticles supported KCC-1 for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4. The examined catalyst showed superior catalytic activity in comparison with to Ni@Au NPs. This was explained by the high accessibility provided by KCC-1 and also due to the less aggregation of Ni@Au NPs on the KCC-1 nano-silica support. The Ni@Au/KCC-1 was also found to be an excellent catalysts to reduce 2-nitroaniline to o-Phenylenediamine. In this study, Ni@Au NPs as the active sites reduced the use of Au content not effecting the catalytic activity. Also possess paramagnetic nature, which makes the catalyst easy to recover for reuse. Authors have also shown that Ni@Au/KCC-1 can be reused at least ten times without significant reduction in catalytic activity. The sustainable activity was attributed to the inhibition of leaching of Ni@Au NPs from the mercaptopropyl groups functionalized KCC-1^[21].


VIII) C-C bond forming reactions

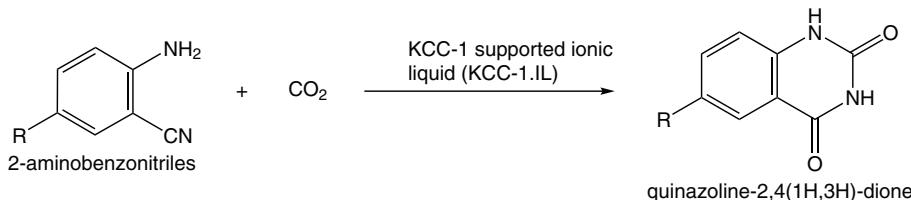
Several research group have demonstrated use of KCC-1 for various catalytic reactions including, Suzuki coupling^[22], Suzuki–Miyaara cross-coupling^[23], Knoevenagel Condensation^[6] and also synthesizing various industrially important organic compounds.

Fihri et al. investigated Pd nanoparticles supported KCC-1 for Suzuki coupling of aromatic halides. In order to prepare the catalysts, KCC-1 was first functionalized with amine groups using 3-aminopropyltriethoxysilane to obtain KCC-1-NH₂. Later, the functionalized surface was treated with PdCl₂ to prepare KCC-1-NH₂/Pd. Authors found that the synthesized catalyst was active for different aryl bromides and iodides with aryl boronic acids and demonstrates good to excellent yields. It was possible to easily recover the catalyst from the reaction mixture and researchers reused it for a number of cycles with no significant change in the catalyst activity. Thus authors confirms the heterogeneity and good stability of this catalyst system. TEM investigations carried out in this study indicates no change in the morphology of fresh and used catalyst, which indicated no Ostwald ripening^[22].

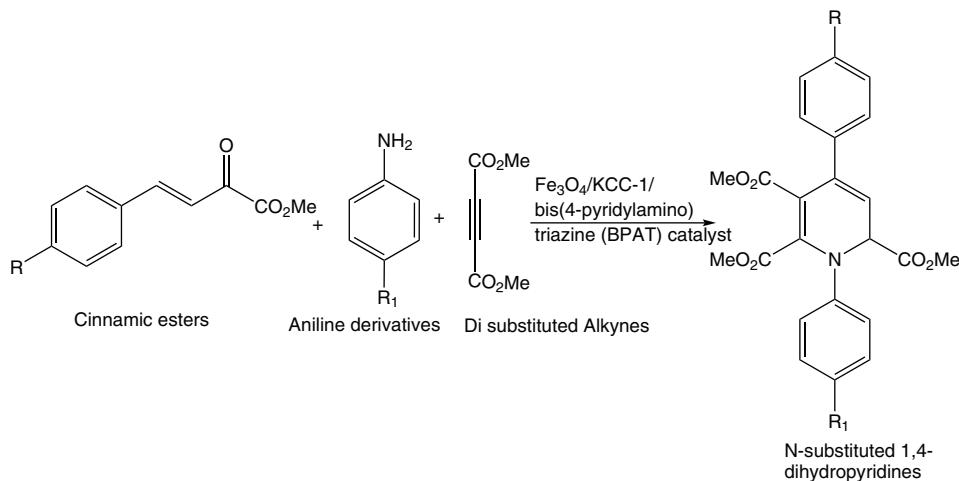
P. Gautam et al. synthesized palladium nanoparticles (Pd NPs) supported on KCC-1 and developed an economically viable and sustainable protocol for the carbonylative Suzuki–Miyaura cross coupling reaction. Pd nano particles supported on KCC-1 demonstrates the turnover number (TON) 28- times and a turnover frequency (TOF) 51-times greater than the best Palladium supported catalyst reported for the carbonylative cross-coupling between 4-iodoanisole and phenylboronic acid. Catalysts tested in this study could be recycled up to ten times with negligible loss in activity till eighth cycle^[23].

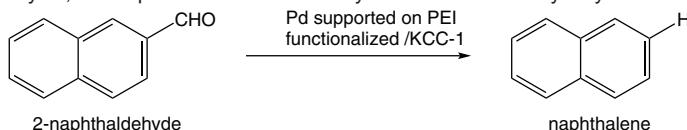

IX) Knoevenagel condensation

M.Bouhrara et al. synthesized Nitridated KCC-1 (solid base) by ammonolysis under a flow of ammonia (NH_3). It was found that the synthesized catalyst is highly active for Knoevenagel condensation reactions of different aldehydes. Tested catalysts in this research work were active for the transesterification of esters with a wide range of alcohols compared to the reported catalysts. Authors explained the improvement in activity by the presence of both basic (amines) and acidic (silanols) sites and more importantly excellent accessibility of these sites in case of KCC-1. The unique structure of KCC-1 assists the substrates to easily penetrate and interact with basic amine and helps in improving the catalytic activity^[6].

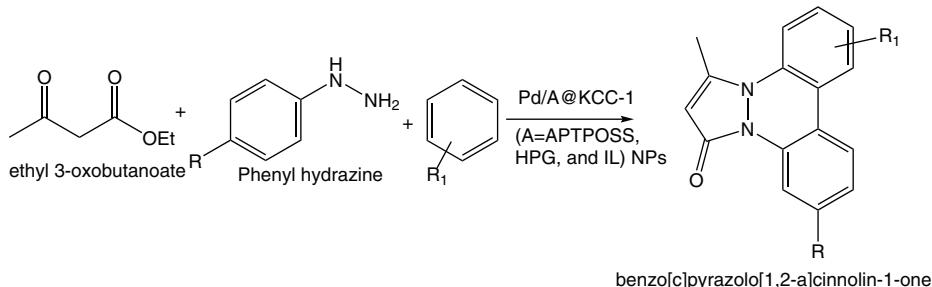


X) Synthesizing different organic compounds

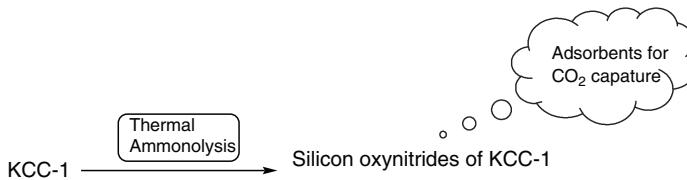

S.M. Sadeghzadeh explored KCC-1 based catalysts for construction of different organic compounds. Author reported a green and efficient method for synthesis of various triazolo [1,2-a]indazole-triones using KCC-1 catalyst at room temperature under solvent free conditions by visible light. Nano- SiO_2 , MCM-41, SBA-15 were also tested for synthesis of triazolo [1,2-a]indazole-triones using the same conditions. It was observed that the yields of the desired product was fair to good with Nano- SiO_2 , MCM-41, SBA-15. However, KCC-1 shows excellent yields for the same reaction. Non-negligible activity observed using KCC-1 was explained based on its shape, composition and morphology^[10].


In a different study, S.M. Sadeghzadeh synthesized ionic liquid functionalized KCC-1 and their activity was tested for the synthesis of quinazoline-2,4 (1H, 3H)-diones from CO_2 and 2-aminobenzonitriles under mild conditions. Author compared the catalytic performance of ionic liquid functionalized KCC-1 and literature reported catalysts. Results in this study clearly indicate that the synthesized catalysts show good to excellent yields at lower temperature with small amount of catalyst, lower pressure of carbon dioxide and shorter reaction time. The synthesis was shown to be green, low-cost and was effective for the development of other materials^[24].

The author also investigated $\text{Fe}_3\text{O}_4/\text{KCC-1/BPAT}$ MNPs core–shell nanocomposite for the synthesis of N-substituted 1,4-dihydropyridines with excellent yield under mild reaction condition. It was found that the studied catalyst was non-toxic, green and economically viable and recyclable for the synthesis of N-substituted 1,4-dihydropyridines^[25].



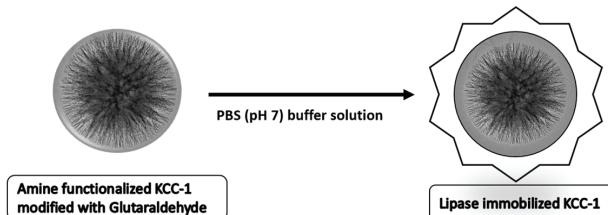
P. K. Kundu et al. studied KCC-1-PEI/Pd catalysts for decarbonylation of aldehydes, wherein they developed an efficient heterogeneous catalytic protocol for the decarbonylation of a variety of aldehydes with complete conversion to products. By doing this, authors have found an easy way for product purification (without chromatography) using KCC-1-PEI/Pd catalyst. The developed method in this study not only limited to aromatic aldehydes, but the decarbonylation of hetero aromatic, alkane, and alkenylaldehyde derivatives. Authors found that the studied catalyst have excellent recyclability even after eightcycles, which proves the sustainability of the studied catalyst system^[26].


S. Sadeghzadeh synthesized palladium nanoparticles (Pd NPs) dispersed on KCC-1 functionalized with different groups such as APTPOSS@KCC-1, hyperbranched polyglycerol@KCC-1 (HPG@KCC-1), and ionic liquid@KCC-1 (IL@KCC-1). These catalysts are evaluated for synthesis of benzo[c]pyrazolo[1,2-a]cinnolin-1-one. It was observed that APTPOSS@KCC-1 displayed good catalytic

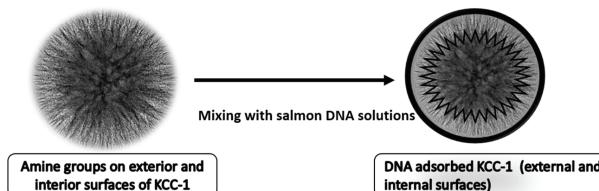
reaction and also exhibited excellent reusability in the catalytic reaction. The high activity of APTPOSS functionalized KCC-1 was attributed to its high accessibility and minimum aggregation. Also its tolerance to leaching of the nanoparticles^[27].

XI) Adsorbent for CO₂ capture

U. Patil et al. studied the use of silicon oxynitrides as adsorbents for CO₂ capture. In this investigation authors synthesized three series of functionalized materials based on KCC-1, SBA-15 and MCM-41 with Si–NH₂ groups in a single step process via thermal ammonolysis. Authors demonstrates that studied materials overcome several limitations associated with conventional aminegrafted mesoporous silica. Adsorbents prepared by ammonolysis shows good CO₂ capture capacity, faster adsorption–desorption kinetics as well as effective regeneration and reuse. Also the studied materials demonstrate excellent thermal and mechanical stability^[28]. Graphical representation of the process is presented below.

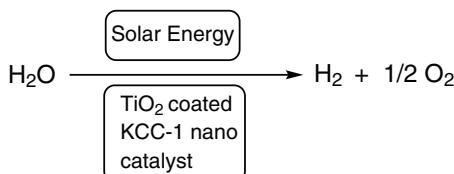


B. Singh et al. synthesized KCC-1 based hybrid materials functionalized by different amine molecules using physisorption and covalent attachment. Synthesized materials were tested for their CO₂ capture capacity. Among the studied materials, the tetraethylene pentamine (TEPA) based KCC-1 (KCC-1-TEPA_{ads}) showed superior capacity in comparison with MCM-41 in terms of textural stability, CO₂ capture capacity, rate of adsorption as well as thermal stability. KCC-1-TEPA_{ads} demonstrates the adsorption capacity of 91.5 mmol g⁻¹, whereas MCM-41-TEPA_{ads} CO₂ capture capacity was observed to be only 73.1 mmol g⁻¹. These results clearly indicate the superior stability of the KCC-1-based sorbents as compared to the conventional mesoporous materials^[5]. Graphical representation of the above mentioned process is shown below.

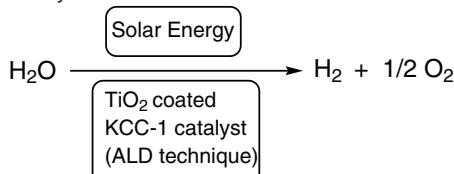


XII) Biological applications like immobilization of enzymes and DNA adsorption studies

Zafar Ali et al. also studied the immobilization of lipase on KCC-1. Author's method of synthesis, activation, and optimization of immobilization conditions, produced better resistance to temperature and pH inactivation as compared to the free lipase. Therefore, it widened the reaction pH and temperature regions, with the optimum pH and temperature of 7.5 and 40°C, respectively. The immobilized Lipase i.e. Candida Ragusa (ICRL) showed above 81% of the initial activity even after 28 days. Also 80% activity after 8 repeated cycles. Authors also demonstrated the ICRL improved storage stability, reusability as well as 700 U/g of protein as immobilization efficiency^[29]. Graphical representation of Immobilization of enzyme on KCC-1 is shown below.

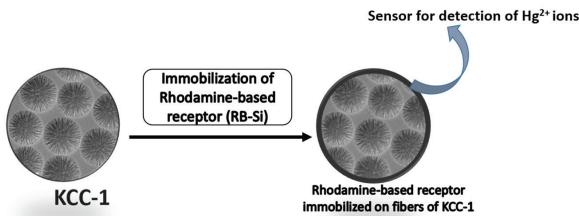


Xiaoxi Huang et al. performed DNA adsorption studies on a series of KCC-1- and MCM-41-based nanomaterials that are functionalized with organoamine groups. Authors observed higher adsorption capacities for KCC-1 based materials as compared to MCM-41 based nanomaterials. It was explained that DNA adsorption reaches saturation once the outer surfaces of the MCM-41 nanoparticles are occupied by the DNA molecules, leaving their inner channel spaces to play negligible role in the adsorption of DNA molecules. However, due to the unique fibrous morphology, KCC-1-based nanomaterials absorb DNAs efficiently both on their external and internal surfaces. Cellular toxicity tests performed in this study demonstrates the biocompatibility of KCC-1^[12]. Graphical representation of DNA adsorbed KCC-1 is shown below.

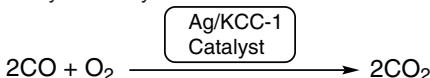


XIII) Photo catalysis

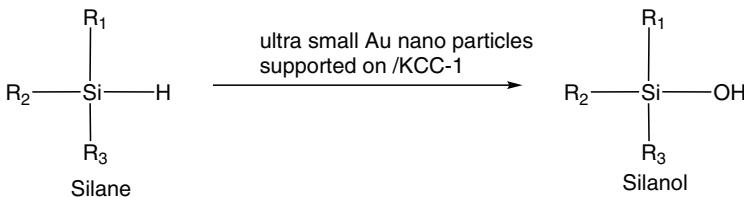
Bayal et al. also reported a new method to fabricate TiO_2 on the fibers of KCC-1. The synthesized KCC-1/ TiO_2 photocatalyst showed a very high yield of H_2 (26.4 mmolh-1g-1 TiO_2) in presence of UV light. The yield reported in this research study was one of the best reported so far for photocatalytic H_2 generation. In addition, authors do not observe decrease in photocatalytic activity of KCC-1/ TiO_2 , unlike conventional mesoporous silica materials and this effect was attributed to open morphology of KCC-1^[30].



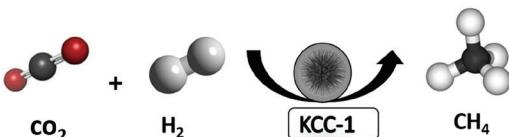
R. Singh et al. designed and synthesized KCC-1 based photo catalysts by coating TiO_2 on fibers of KCC-1 using atomic layer deposition (ALD). Catalysts developed by authors showed superior catalytic activity for photocatalytic dye degradation in comparison to MCM-41 and SBA-15 based TiO_2 catalysts synthesized with aid of ALD as well as literature reported silica-supported TiO_2 catalysts. Authors have described the advantages of KCC-1/ TiO_2 catalysts over MCM-41 and SBA-15 based TiO_2 . Some of these include uniform and conformal coating, less reduction in surface, enhanced light harvesting properties and better accessibility of active sites^[13].


XIV) Optical sensing properties

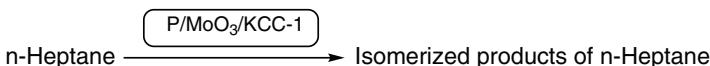
KCC-1 has been also explored as sensor with optical sensing properties and is used for detection of Hg^{2+} detection with very good selectivity, and sensitivity. The sensor was developed by immobilizing the rhodamine-based receptor (RB-Si) within the fibers of KCC-1. Authors observed that spirolactam ring opening of the rhodamine groups are the main reason for the fluorescence enhancement responses of RB-KCC-1 and obtained a detection limit of 9.05×10^{-7} . Based on the results obtained authors conclude that the synthesized materials are potential candidates for the detection and effective removal of Hg^{2+} in biological, environmental, and industrial fields^[31]. The below figure indicates the Graphical representation of RB-Si Immobilized KCC-1 acted as a sensor for the detection of Hg^{2+} ions.


XV) Effect of pore structure of silica on CO oxidation activity

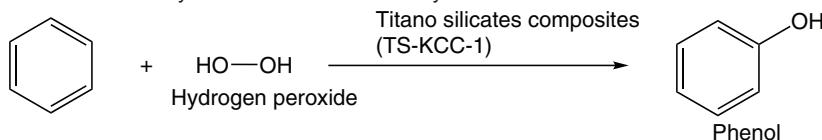
J. Xu et al. studied the CO oxidation reaction using different Ag supported on mesoporous supports such as MCM-41, SBA-15 and KCC-1. Authors observed that the morphology of the supports influence the dispersion of Ag nanoparticles, consequently shows difference in catalytic activity. It was mentioned that when KCC-1 was used, the migration and agglomeration of Ag particles can be effectively hindered by the open access mesopores. Authors therefore conclude that in comparison with SBA-15 and MCM-41, KCC-1 shows very high catalytic activity^[8].


XVI) Oxidation of organosilanes to silanols

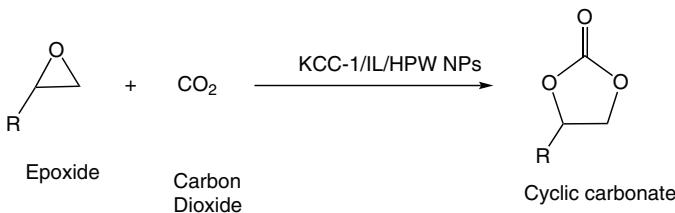
M. Dhiman et al. reported ultrasmall and pseudo single atoms of gold supported on KCC-1 for the oxidation of organosilanes to silanols with high Turnover Number (TON), which is nearly half a million (591,000) for dimethylphenyl silane as a model substrate). The Extraordinary catalytic activity and stability in this study was attributed to dispersion of ultrasmall nanoparticles and pseudo-single atoms of Au as well as $\text{Au}^{\delta+}$ species on fibers of KCC-1. This oxidation was carried out only at 45°C using water as an oxidant and hydrogen was observed to be the by-product in this study. Authors also mention that, it was possible to easily separate Au based KCC-1 catalyst and they are stable for several cycles. These results clearly indicates the reusability of catalyst^[32].


XVII) CO_2 methanation

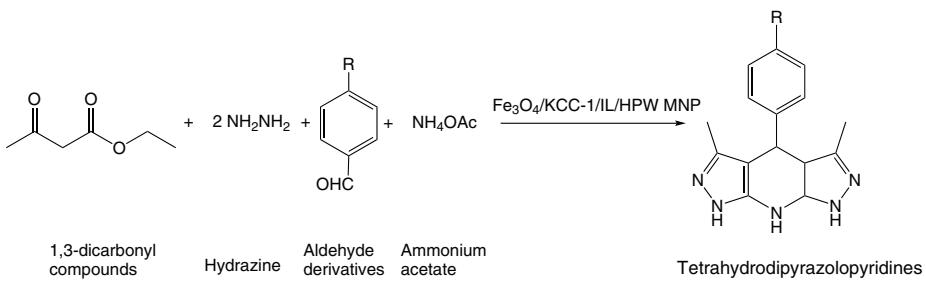
Hamid et al. studied the catalytic activity of KCC-1 for CO_2 methanation and found that KCC-1 is a probable candidate for the examined reaction as compared to MCM-41. The high activity of KCC-1 was attributed to the presence of abundant oxygen vacancy facilitating the CO_2 adsorption/dissociation. With the help of IR studies, it was also explained that KCC-1 has significantly higher basicity in addition to oxygen vacancy than that of MCM-41. These two properties of the catalysts were explained as reasons for improved catalytic performance of the catalyst. KCC-1 in this research work show good stability throughout 90 h of reaction due to the resistance towards Ostwald ripening^[7]. Graphical representation of CO_2 methanation using KCC-1 is presented below.


XVIII) n-Heptane isomerization

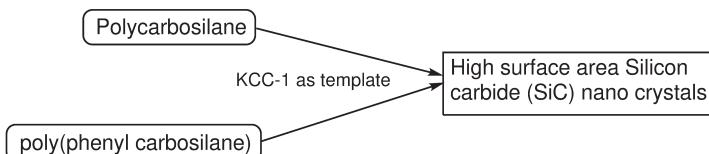
Fatah et al. synthesized Molybdenum oxide (MoO_3) supported KCC-1 and phosphorus (P) loaded on MoO_3 /KCC-1 ($\text{P/MoO}_3/\text{KCC-1}$) and studied its activity for n-Heptane isomerization. Synthesis was carried out by mixing the MoO_3 and KCC-1 powder in a ball mill equipment. For doing this, an agate container having 300 cm^3 volume and six-piece of 20 mm diameter agate ball (weight of approximately 11 g each) were used. Authors found a slight change in the morphology after the addition of MoO_3 and modification with H_3PO_4 . It was also observed $\text{MoO}_3/\text{KCC-1}$ shows excellent catalytic activity for n-heptane isomerization. This was attributed to the high amount and high accessibility of the active sites as well as the high dispersion of MoO_3 ^[33]. Graphical representation of the process is presented below.


XIX) Benzene hydroxylation and 1-hexene epoxidation reactions

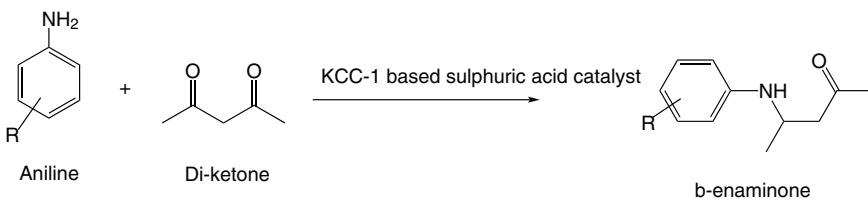
Yang et al. prepared nanosized monodispersed amphiphilic titanosilicate composite (TS-1@KCC-1) materials, which exhibited superior thermal stability as well as catalytic activity. These surface active titanosilicates were evaluated for their activity in benzene hydroxylation and 1-hexene epoxidation reactions. They observed that $\text{Rh}(\text{OH})_3$ species supported TS-1@KCC-1 exhibited higher catalytic activity in benzene hydroxylation with hydrogen peroxide under Pickering Interface Catalysis (PIC) in comparison with phase-boundary catalysis (PBC). The PIC reaction system in this study demonstrates excellent chemical stability and reasonable reusability.^[34]


XX) Synthesis of cyclic carbonate from carbon dioxide and epoxides

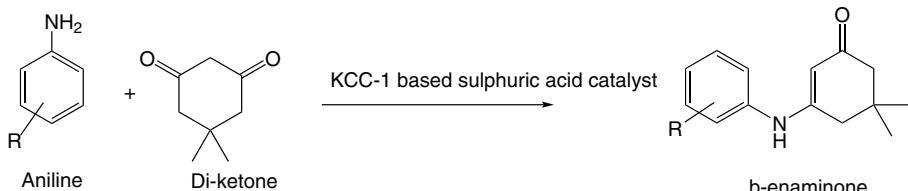
S.M. Sadeghzadeh also studied the KCC-1 supported heteropolyacid-based ionic liquid (KCC-1/IL/HPW) for the synthesis of cyclic carbonate from carbon dioxide and epoxides under mild conditions. Authors observed increase in catalytic efficiency of IL/HPW after immobilization onto KCC-1 NPs and KCC-1/IL/HPW NPs are found to be recovered from the reaction mixture during the work-up procedure. Also the recycled catalyst was reused for ten consecutive cycles and observed to be active without any significant loss in catalytic activity. The developed method of synthesis in this study indicate a green and low-cost protocol for making heteropolyacid-based catalysts and is also promising for developing similar type of materials^[35].


XXI) Synthesis of tetrahydropyrazolo pyridines

Using the developed heteropolyacid-based ionic liquid (KCC-1/IL/HPW) catalyst S.M. Sadeghzadeh also investigated the synthesis of tetrahydropyrazolo pyridines. Catalyst was found to be active for the studied reaction and also it was possible to recover and reuse it several times without any significant decrease in activity and selectivity. The high activity of the catalyst was attributed to high accessibility of active sites available with KCC-1 based catalyst^[36].

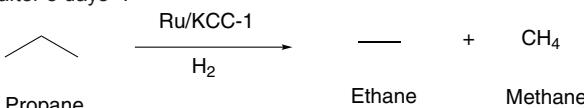

XXII) Synthesis of high surface area Silicon carbides (SiC)

Eunjin Jung et al. made an attempt to make high-surface area SiC spheres by the nano casting technology using a KCC-1 as a template. Polycarbosilane and poly(phenyl carbosilane) were used as the precursor for silicon carbide and it was possible to obtain hollow spheres by the inversion of a template structure. In this work, poly (phenyl carbosilane) worked as a binding agent due to its higher molecular weight. Fibrous structure of KCC-1 was obtained for hollow spheres of silicon carbides. The resulting fibrous hollow spheres possessed SiC nano crystals and also shows $407 \text{ m}^2/\text{g}$ BET surface area^[37]. Graphical representation of the process that describes the synthesis of high surface area Silicon carbides (SiC) is shown below.

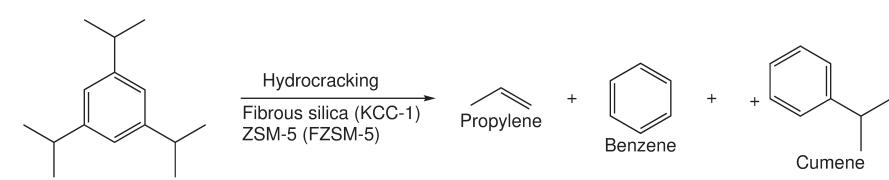
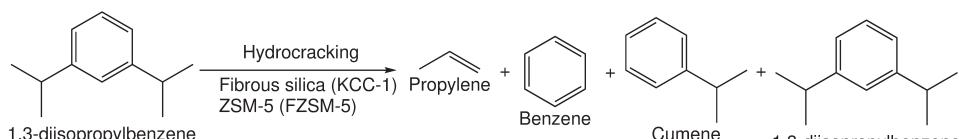
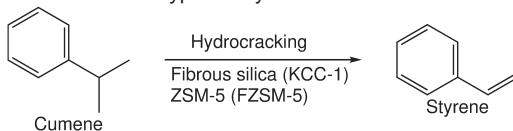


XXIII) Synthesis of β -enaminones

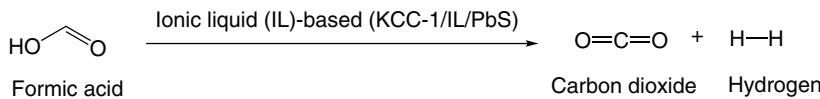
Z. N. Siddiqui et al. developed an efficient protocol for the preparation of β -enaminones using KCC-1 sulphuric acid catalyst. Synthesis of KCC-1 sulfuric acid (KCC-1-SA) was carried out by dispersing KCC-1 (1.0 g) in CH_2Cl_2 (10 mL) in a flask. This was achieved by first dissolving chlorosulfonic acid (8 mmol) in CH_2Cl_2 (10 mL) and the resulting solution was added to the KCC-1 suspension through a constant-pressure dropping funnel under stirring for around 30 min at room temperature. After this addition, the resulting mixture was stirred for another 30 min at room temperature. The obtained brown solid was collected by filtration and it was washed with ether (50 mL). Procedure was concluded with a drying step at room temperature. Authors carried out the reactions under thermal solvent-free conditions and after a few minutes they obtained excellent yields. It was concluded that the amount of catalyst used is very low and the followed methodology that is environmentally benign in comparison with H_2SO_4 , in terms of the amount, hazardous nature and reaction conditions. It was possible to recover the catalyst and is recyclable up to seven cycles without much loss in activity^[38].


R - H, p-OMe, m-NO₂, p-Cl, p-OH, p-CH₃

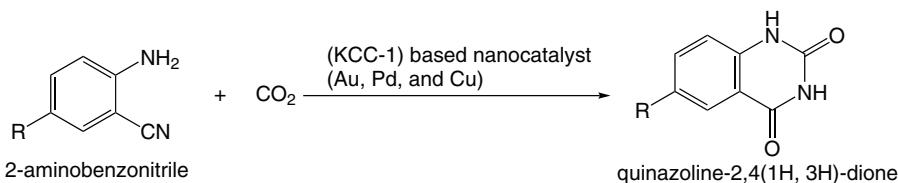
R - H, p-OMe, m-NO₂, m-NO₂, p-Cl, p-OH, p-CH₃




XXIV) Hydrogenolysis of Alkanes

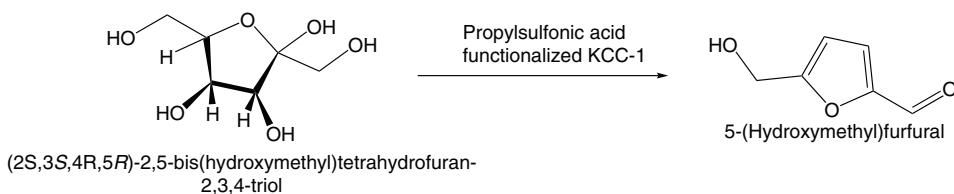
Fihri et al. studied Ru nanoparticle supported on KCC-1 for the hydrogenolysis of propane and ethane. It was observed from the TEM images that Ru nanoparticles are fully loaded on fibers of KCC-1. Authors proved that KCC-1 showed better catalytic performance as compared to conventional mesoporous silica materials such as MCM-41 and SBA-15. This examination was carried out by loading comparable Ru content on aforementioned supports and testing under identical conditions. It was also explained that the superior catalytic activity of KCC-1 based catalyst is attributed to high accessibility of Ru supported on KCC-1. In addition, high activity of Ru/KCC-1 catalyst was explained through HR-TEM studies. Authors mention that in case of Ru/KCC-1 hexagonal shaped nanoparticles were present having several corners and sharp edges and these possess reactive atoms with lowest coordination numbers. Catalyst based on KCC-1 was observed to be stable with excellent lifetime. Deactivation was not observed even after 8 days^[3].


XXV) Cumene hydrocracking

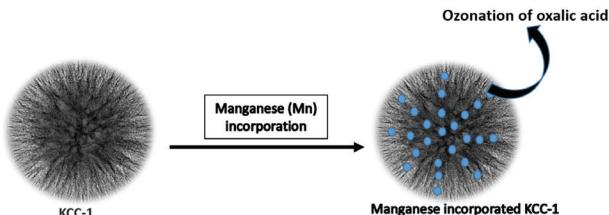
M. L. Firmansyah et al. prepared ZSM-5 zeolite with KCC-1 by combining a microemulsion technique with zeolite seed-assisted crystallization. The resulting material (FZSM-5) possessed very good physicochemical properties such as high surface area, fibrous morphology and strong acid sites. Authors explained that the cumene hydrocracking activity of the material could be attributed to the large number of active sites as well as their high accessibility. High dispersion of the metal particle was also observed, which was mainly due to the large surface area of the FZSM-5 type catalyst. The catalytic activity for cumene hydrocracking and EB dehydrogenation was enhanced by the protonation and introduction of Pt into the FZSM-5 type catalyst^[39].


XXVI) Dehydrogenation of aqueous solutions of HCOOH/HCOONa

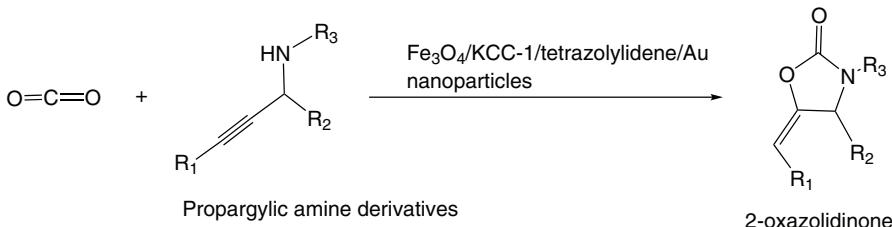
S.M. Sadeghzadeh synthesized a novel PbS (lead sulphide) containing ionic liquid IL-based KCC-1 catalysts (KCC-1/IL/PbS) and studied their catalytic applications in dehydrogenation of aqueous solutions of HCOOH/HCOONa to H₂ and CO₂ gas. It was found that the activity was due to dendritic fibrous morphology of the KCC-1 as well as the synergistic effect between KCC-1/IL and the small PbS NPs. Catalysts investigated in this study could be recovered and reused at least ten times with no decrease in activity^[40].


XXVII) Spidery catalyst for the synthesis of quinazoline-2,4(1H,3H)-diones

S.M. Sadeghzadeh synthesized multi-carboxylic hyperbranched polyglycerol groups (HPG) functionalized KCC-1 and nanocatalysts based on noble metal (Au, Pd, and Cu) were developed with the functionalized KCC-1. These resulting catalysts observed to be having ultrasmall size and monodisperse particles with uniform distribution, and high loading capacity. With the help of synthesized catalysts, an economically viable and green protocol was developed for reaction of CO₂ with 2-aminobenzonitrile to obtain quinazoline-2,4(1H, 3H)-diones. Authors examined the impact of HPG by synthesizing catalyst with HPG functionalization and without HPG functionalization i.e KCC-1/HPG/X (X = Au, Pd, Cu) and KCC-1/X (X = Au, Pd, Cu). It was observed that the amount of motionless nanoparticles in KCC-1/HPG/X were about twice that in KCC-1/X. From the results, the effectiveness of HPG functionalization on KCC-1 was demonstrated^[41].

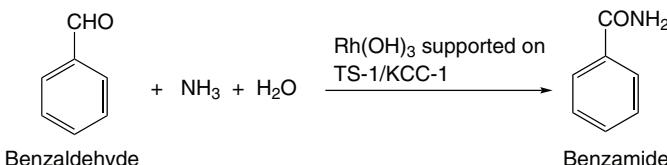

XXVIII) Production of 5 hydroxymethylfurfural (HMF)

N. Chermahini et al. functionalized KCC-1 with propylsulfonic acid groups (Pr-SO₃H) and investigated resulting catalysts efficiency for the production of 5 hydroxymethylfurfural (HMF) by the dehydration of fructose. Authors achieved 67.71% yield and 68.32% selectivity for the HMF at a 99.11% fructose conversion. Although the acid loading on the catalyst surface was low, the results observed in this study are better as compared to the reported studies. It was explained that the catalyst was reusable and can be synthesized by an environmentally friendly process for the heterogeneous catalytic manufacture of 5-HMF^[42].



XXIX) Ozonation of oxalic acid

S. Afzala et al. investigated the Manganese incorporated fibrous silica nanosphere (MnOx-0.013/KCC-1) for ozonation of oxalic acid. Synthesized catalysts show excellent activity and stability with minimum Mn leaching in comparison to MnOx loaded on MCM-41. The high catalytic activity of studied catalysts was attributed to the generation of hydroxyl radical. Authors mentioned that surfacehydroxyl groups observed with the help of phosphates and ATR-FTIR were found to be active sites^[43]. Graphical representation of Mn loaded KCC-1 used for ozonation of oxalic acid is shown below.



S.M. Sadeghzadeh studied gold (III) phosphorus complex containing HPG-based KCC-1 and tested its catalytic activity for the cyclization of propargylic amines with CO₂ to provide 2-oxazolidinones. It was observed that hot filtration tests and selective catalyst poison examinations showed the presence of soluble Au species during the reaction process. However, recovery studies demonstrated that no significant decrease has occurred in the activity and metal content of recovered KCC-1/IL/Au. On the other hand catalysts were able to be recovered and reused at least ten times with no loss in activity and selectivity. Through the obtained results it was concluded that superior effectiveness of HPG@KCC-1/PPh₂/Au nanocatalyst was attributed to isolated HPG units incorporated in the fibers of KCC-1, which could control the mechanistic aspects through preventing the formation of agglomerated gold (III) phosphorus complex and stabilization of active catalytic gold species^[44].

XXX) One-pot synthesis of benzamide

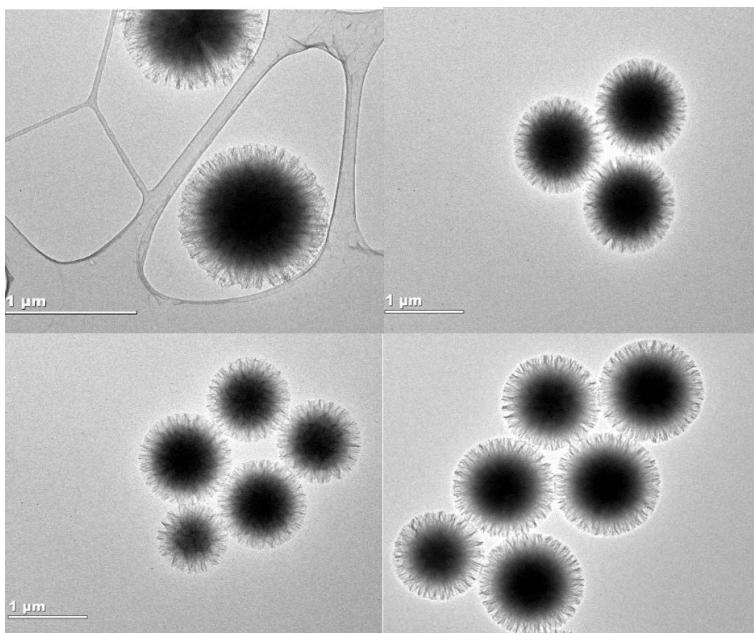
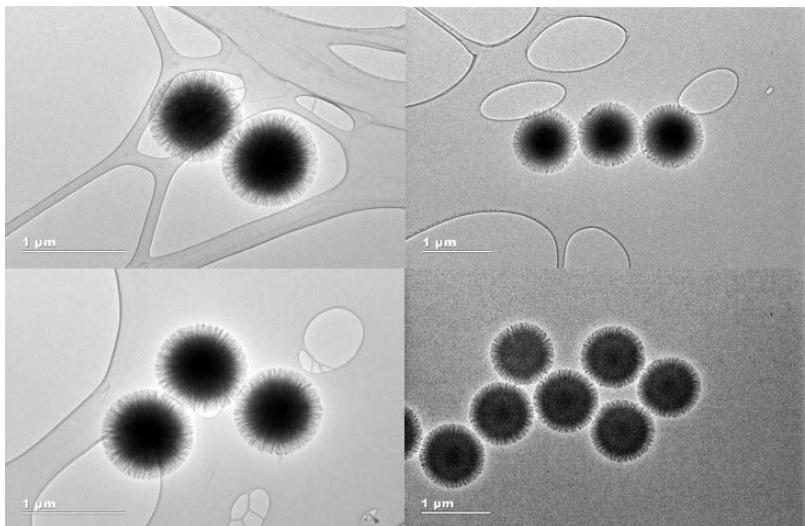
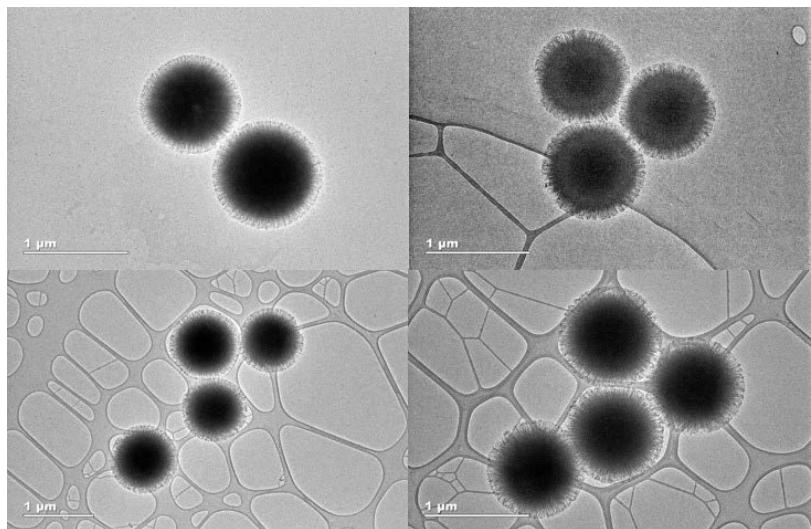
Hong-gen Peng et al. Synthesized a core-shell material consisting of KCC-1 and encapsulated TS-1 zeolite (Si/Ti=40) in a microemulsion system. Rh(OH)₃ species were supported on KCC-1 and the resulting bifunctional Rh(OH)₃/TS-1@KCC-1 catalyst was used for obtaining primary amides from aldehyde, NH₃ and H₂O₂ through one-pot ammoniation and rearrangement(benzamide from benzaldehyde). Authors explained that Titanosilicates are potential candidates for catalyzing the oxidation of NH₃ with H₂O₂ to yield the hydroxylamine intermediate. The formed intermediate again reacts with aldehydes or ketones via non-catalytic oximation to produce oximes. In this study, the Rh(OH)₃ species are considered to be the catalytic sites for the rearrangement of aldehyde oximes to amides. The synthesized TS-1@KCC-1 catalyst was also found to have superior hydrothermal and mechanical stability and is a robust support for dispersing and stabilizing the Rh(OH)₃ species^[45].

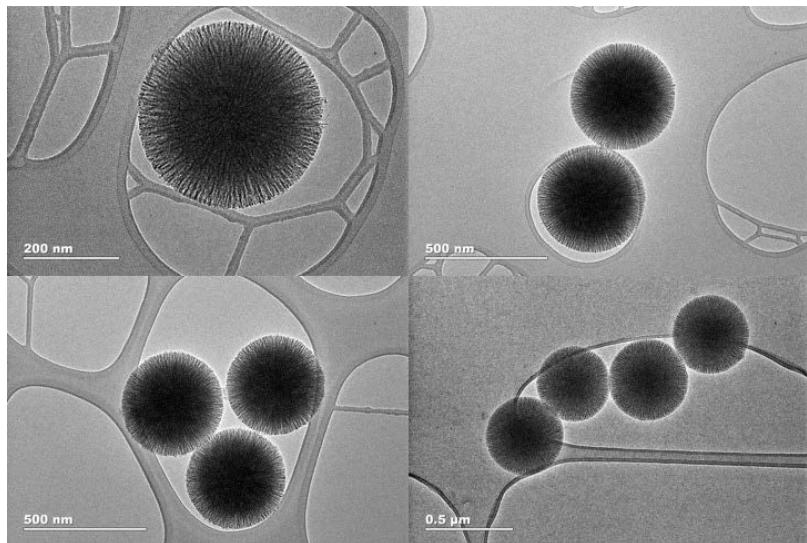
Catalog Products of KCC-1

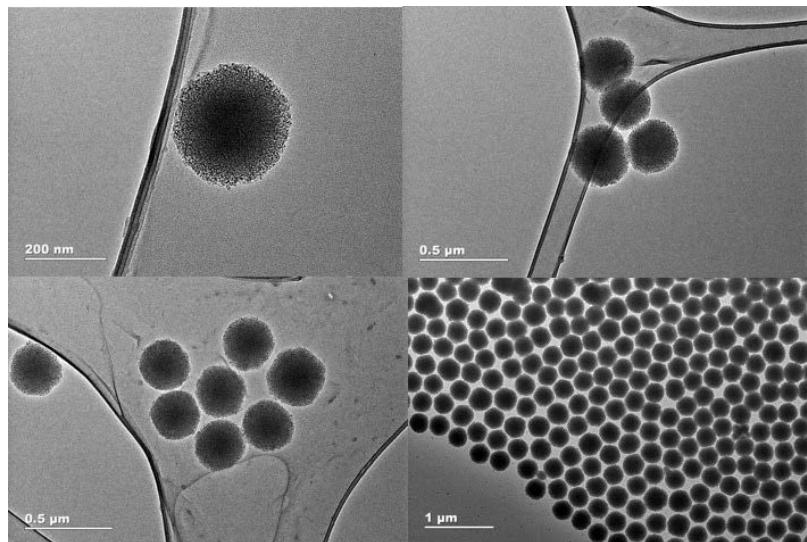
Different grades of KCC-1 products have been included in the catalogue and these products based on their varied properties can have different applications in catalysis, paints & coatings, cosmetics and drug delivery. Table.1 indicates the particle size, specific surface area and pore volume of different grades of KCC-1. Figure (1-6) show the Transition Electron Microscopy (TEM) images of KCC-1 product portfolio.

Category	Grade	Particle size (nm)	Spec. Surface Area (m ² /g)	Pore Volume (cm ³ /g)
Large	KCC-1 L1	~900-1000	~ 700	~1.40
	KCC-1 L2	~900-1000	~ 600	~1.20
	KCC-1 L3	~900-1000	~ 550	~0.80
Medium	KCC-1 M1	~400-450	~ 400	~0.50
	KCC-1 M2	~300-350	~ 600	~0.60
Small	KCC-1 S1	~ 130-190	~380	~ 0.80

Table.2: Summary of properties of KCC-1 product portfolio


Figure.1: Transition Electron Microscopy images of KCC-1 (L1 grade)


Figure.2: Transition Electron Microscopy images of KCC-1 (L2 grade)

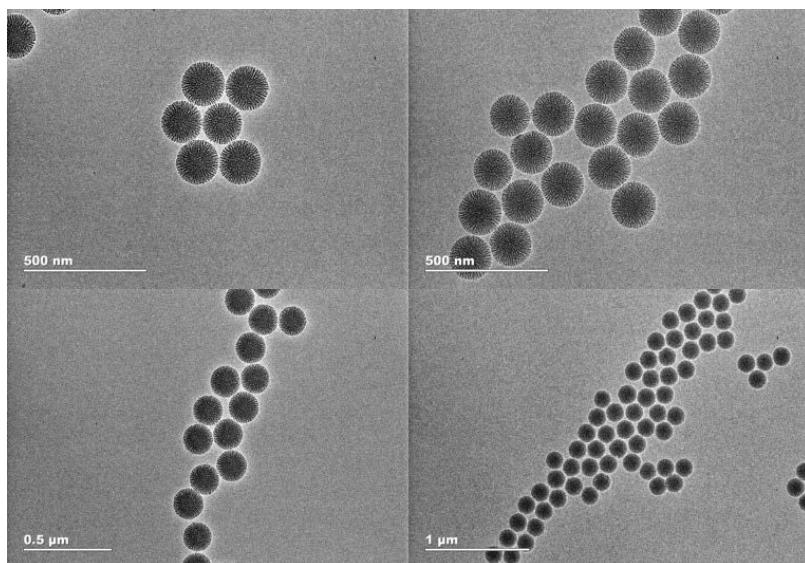

Figure 3: Transition Electron Microscopy images of KCC-1 (L3 grade)

Figure 4: Transition Electron Microscopy images of KCC-1 (M1 grade)

Figure 5: Transition Electron Microscopy images of KCC-1 (M2 grade)

Figure 6: Transition Electron Microscopy images of KCC-1 (S1 grade)

References:

1. High-Surface-Area Silica Nanospheres (KCC-1) with a Fibrous Morphology. Vivek Polshettiwar, Dongkyu Cha, Xixiang Zhang, Jean-Marie Basset. *Angewandte Chemie International Edition* 2010 (49) 9652–9656
2. Hydro-metathesis" of Olefins: A Catalytic Reaction Using a Bifunctional Single-Site Tantalum Hydride Catalyst Supported on Fibrous Silica (KCC-1) Nanospheres. Vivek Polshettiwar, Jean Thivolle-Cazat, Mostafa Taoufik, Francois Stoffelbach, Sebastien Norsic, and Jean-Marie Basset. *Angewandte Chemie International Edition* 2011 (50) 2747–2751
3. Fibrous Nano-Silica (KCC-1)-Supported Palladium Catalyst: Suzuki Coupling Reactions Under Sustainable Conditions. Aziz Fihri, Dongkyu Cha, Mohamed Bouhrara, Noor Almana, and Vivek Polshettiwar. *ChemSusChem* 2012 (5) 85–89
4. Ouyang, M.; Wang, Y.; Zhang, J.; Zhao, Y.; Wang, S.; Ma, X. Three Dimensional Ag/KCC-1 Catalyst with A Hierarchical Fibrous Framework for The Hydrogenation of Dimethyl Oxalate. *RSC Adv.* 2016, 6, 12788-12791.
5. Design of CO₂ sorbents using functionalized fibrous nanosilica (KCC-1): insights into the effect of the silica morphology (KCC-1 vs. MCM-41), Baljeet Singh and Vivek Polshettiwar, *Journal of Materials Chemistry A*, 2016, 4, 7005-7019-7005
6. Nitridated Fibrous Silica (KCC-1) as a Sustainable Solid Base Nanocatalyst. Mohamed Bouhrara, Chanakya Ranga, Aziz Fihri, Rafik R. Shaikh, Pradip Sarawade, Abdul-Hamid Enwas, Mohamed N. Hedhili, and Vivek Polshettiwar. *ACS Sustainable Chemical Engineering*. 2013 (1)1192-1199
7. Oxygen vacancy-rich mesoporous silica KCC-1 for CO₂ methanation. M.Y.S. Hamid, M.L. Firmansyah, S. Triwahyono, A.A. Jalil , R.R. Mukti, E. Febriyanti, V. Suendod, H.D. Setiabudi, M. Mohamed, W. Nabgan. *Applied Catalysis A: General* 532 (2017) 86–94
8. Ag supported on meso-structured SiO₂ with different morphologies for CO oxidation: On the inherent factors influencing the activity of Ag catalysts. Juan Xu, Jingyan Zhang, Honggen Peng, Xianglan Xu, Wenming Liu, Zheng Wang, Ning Zhang, Xiang Wang, *Microporous and Mesoporous Materials* 2017 (242) 90-98
9. Palladium Nanoparticles Supported on Fibrous-Structured Silica Nanospheres (KCC-1): An Efficient and Selective Catalyst for the Transfer Hydrogenation of Alkenes, Ziyauddin S. Qureshi, Pradip B. Sarawade, Matthias Albert, Valerio D'Elia, Mohamed N. Hedhili, Klaus Kçhler, and Jean-Marie Basset, *ChemCatChem* 2015, 7, 635 – 642
10. A multicomponent reaction on a 'free' KCC-1 catalyst at room temperature under solvent free conditions by visible light. Seyed Mohsen Sadeghzadeh. *RSC Adv.*, 2016, 6, 54236
11. Synthesis of manganese incorporated hierarchical mesoporous silicananosphere with fibrous morphology by facile one-pot approach for efficient catalytic ozonation. Shahzad Afzal, Xie Quan, Shuo Chen, Jing Wang, Dost Muhammad. *Journal of Hazardous Materials* 318 (2016) 308–318

References (continued):

12. Dendritic Silica Nanomaterials (KCC-1) with Fibrous Pore Structure Possess High DNA Adsorption Capacity and Effectively Deliver Genes In Vitro. Xiaoxi Huang, Zhimin Tao, John C. Praskavich, Jr. Anandarup Goswami, Jafar F. Al-Sharab, Tamara Minko, Vivek Polshettiwar, Tewodros Asefa. *Langmuir* 2014, 30, 10886–10898
13. Atomic Layer Deposited (ALD) TiO₂ on Fibrous Nano-Silica (KCC-1) for Photocatalysis: Nanoparticle Formation and Size Quantization Effect, Rustam Singh, Rudheer Bapat, Lijun Qin, Hao Feng, Vivek Polshettiwar, *ACS Catalysis*. 2016, 6, 2770–2784
14. Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCC-1) as Efficient Heterogeneous Catalysts for CO Oxidation, Ziyauddin S. Qureshi et al., *ChemCatChem* 2016, 8, 1671 – 1678
15. Hydrogen generation. J. M. Basset, Vivek Polshettiwar, M. Bouhrara, Y. Saïh, US Patent application 2012/6158968
16. Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity. Manas K. Bhunia, Sigismund Melissen, Manas R. Parida, Pradip Sarawade,[†] Jean-Marie Basset, Dalaver H. Anjum, Omar F. Mohammed, Philippe Sautet, Tangui Le Bahers, and Kazuhiro Takanabe. *Chemistry of Materials* 2015 (27) 8237–8247
17. Ultrasmall nanoparticles and pseudo-single atoms of platinum supported on fibrous nanosilica (KCC-1/Pt): engineering selectivity of hydrogenation reactions. Mahak Dhiman and Vivek Polshettiwar, *Journal of Materials Chemistry A*, 2016 (4)12416
18. Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Xuanduong Le, Zhengping Dong , Xinlin Li , Wei Zhang , Minhdong Le , Jiantai Ma, *Catalysis Communications* 59 (2015) 21–25
19. Palladium nanoparticles immobilized on core–shell magnetic fibers as a highly efficient and recyclable heterogeneous catalyst for the reduction of 4-nitrophenol and Suzuki coupling reactions. Xuanduong Le, a Zhengping Dong, Yansheng Liu, Zhicheng Jin,aThanh-Do Huy, Minhdong Le and Jiantai Ma. *Journal of Material Chemistry A* 2014(2) 19696–19706
20. Efficient Synthesis of Monodisperse Metal (Rh, Ru, Pd) Nanoparticles Supported on Fibrous Nanosilica (KCC-1) for Catalysis. Mahak Dhiman, Bhagyashree Chalke, and Vivek Polshettiwar. *ACS Sustainable Chemical Engineering*. 2015 (3)3224–3230
21. Fibrous nano-silica containing immobilized Ni@Au core–shellnanoparticles: A highly active and reusable catalyst for thereduction of 4-nitrophenol and 2-nitroaniline. Xuanduong Le, Zhengping Dong, Wei Zhang, Xinlin Li, Jiantai Ma. *Journal of Molecular Catalysis A: Chemical* 395 (2014) 58–65
22. Fibrous Nano-Silica (KCC-1)-Supported Palladium Catalyst: Suzuki Coupling Reactions Under Sustainable Conditions. Aziz Fihri, Dongkyu Cha, Mohamed Bouhrara, Noor Almana, and Vivek Polshettiwar. *ChemSusChem* 2012 (5) 85–89
23. KCC-1 supported palladium nanoparticles as an efficient and sustainable nano catalyst for carbonylative Suzuki–Miyaura cross-coupling, Prashant Gautam, Mahak Dhiman, Vivek Polshettiwar and Bhalchandra M. Bhanage, *Green Chem.*, 2016 (18)5890
24. Ionic liquid immobilized onto fibrous nano-silica: A highly active and reusable catalyst for the synthesis of quinazoline-2,4(1 H,3 H)-diones, Seyed Mohsen Sadeghzadeh, *Catalysis Communications* 72 (2015) 91–96
25. Bis(4-pyridylamino)triazine-stabilized magnetite KCC-1: a chemoselective, efficient, green and reusable nanocatalyst for the synthesis of N-substituted 1,4-dihydropyridines. Seyed Mohsen Sadeghzadeh. *RSC Advances* 2016 (6) 99586
26. Palladium Nanoparticles Supported on Fibrous Silica (KCC-1-PEI/Pd): A Sustainable Nanocatalyst for Decarbonylation Reactions. Pintu K. Kundu, Mahak Dhiman, Atanu Modak, Arindam Chowdhury, Vivek Polshettiwar, and Debabrata Maiti. *ChemPlusChem* 2016(81)1142 – 1146
27. Pd/APTPOSS@KCC-1 as a new and efficient support catalyst for C–H activation. Seyed Mohsen Sadeghzadeh, Rahele Zhiiani and Shokufe Emrani. *RSC Adv.*, 2017, 7, 24885
28. Silicon oxynitrides of KCC-1, SBA-15 and MCM-41 for CO₂ capture with excellent stability and regenerability. Umesh Patil, Aziz Fihri, Abdul-Hamid Emwas and Vivek Polshettiwar. *Chemical Science* 2012 (3) 2224
29. Immobilization of lipase on mesoporous silica nanoparticles with hierarchical fibrous pore. Zafar Ali, Lei Tian, Panpan Zhao, Baoliang Zhang, Nisar Ali, Muhammad Khan,Qiuyu Zhang. *Journal of Molecular Catalysis B: Enzymatic* 134 (2016) 129–135
30. Nanostructured Silica-Titania Hybrid using Fibrous Nanosilica as Photocatalysts. Nisha Bayal, Rustam Singh, and Vivek Polshettiwar. DOI: 10.1002/cssc.201700135
31. Multifunctional fibrous silica composite with high optical sensing performance and effective removal ability toward Hg²⁺ ions. Zebin Sun, Dan Guo, Li Zhang, Haizhen Li, Bo Yang and Shiqiang Yan, *Journal of Materials Chemistry B*, 2015 (3)3201–3210
32. Organosilane Oxidation with a Half Million Turnover Number using Fibrous Nanosilica Supported Ultrasmall Nanoparticles and Pseudo-Single Atoms of Gold. Mahak Dhiman, Bhagyashree Chalke, and Vivek Polshettiwar. *J. Mater. Chem. A*, 2017, DOI: 10.1039/C6TA09434A
33. n-Heptane isomerization over molybdenum supported on bicontinuous concentric lamellar silica KCC1: Influence of phosphorus and optimization using response surface methodology (RSM). N.A.A. Fataha S. Triwahyono, A.A. Jalila , N. Salamun, C.R. Mamat, Z.A. Majid. <http://dx.doi.org/10.1016/j.cej.2016.12.028>
34. Amphiphilic Titano silicates as Pickering Interfacial Catalysts for Liquid-Phase Oxidation Reactions. Yulin Yang, Wen-Juan Zhou, Armin Liebens, Jean-Marc Clacens, Marc Pera-Titus, and Peng Wu. *Journal of physical chemistry* 2015 (119) 25377–25384

References (continued):

35. A heteropolyacid-based ionic liquid immobilized onto fibrous nano-silica as an efficient catalyst for the synthesis of cyclic carbonate from carbon dioxide and epoxides, Seyed Mohsen Sadeghzadeh, *Green Chemistry*, 2015(17) 3059–3066
36. A heteropolyacid-based ionic liquid immobilized onto magnetic fibrous nano-silica as robust and recyclable heterogeneous catalysts for the synthesis of tetrahydrodipyrrozolopyridines in water. Seyed Mohsen Sadeghzadeh, *RSC Advances* 2016 (6)75973
37. The Synthesis of High-Surface Area Silicon Carbide by Conversion Method Using Carbosilane Polymer. Eunjin Jung, Yoon Joo Lee, Woo Teck Kwon, Younghhee Kim, Dong Geun Shin, and Soo Ryong Kim. *Defect and Diffusion Forum* 353 (2014) 244-247
38. Nano Fibrous Silica Sulphuric Acid as an Efficient Catalyst for the Synthesis of β -Enaminone. Zeba N. Siddiqui, Kulsum Khan, Nayeem Ahmed. *Catalysis Letters* 2014 (144)623–632
39. Synthesis and characterization of fibrous silica ZSM-5 for cumene hydrocracking, M. L. Firmansyah, A. A. Jalil, S. Triwahyono, H. Hamdan, M. M. Salleh, W. F. W. Ahmadd, G. T. M. Kadji, *Catalysis Science & Technology*, 2016, 6, 5178–5182
40. PbS based ionic liquid immobilized onto fibrous nano-silica as robust and recyclable heterogeneous catalysts for the hydrogen production by dehydrogenation of formic acid, *Microporous and Mesoporous Materials* 234 (2016) 310-316
41. Spidery catalyst for the synthesis of quinazoline- 2,4IJ1H,3H)-diones, Seyed Mohsen Sadeghzadeh, *Catalysis Science & Technology*, 2016, 6, 1435–1441-1435
42. Production of 5-hydroxymethylfurfural from fructose using a spherically fibrous KCC-1 silica Catalyst, Alireza Najafi Chermahini, Fereshte Shahangi, Hossein A. Dabbagh Mohammad Saraji, *RSC Advances*, 2016, 6, 33804
43. Synthesis of manganese incorporated hierarchical mesoporous silicananosphere with fibrous morphology by facile one-pot approach forefficient catalytic ozonation. Shahzad Afzal, Xie Quana, Shuo Chen, Jing Wang, Dost Muhammad, *Journal of Hazardous Materials* 318 (2016) 308–318
44. A green approach for the synthesis of 2- oxazolidinones using gold(I) complex immobilized on KCC-1 as nanocatalyst at room temperature. Seyed Mohsen Sadeghzadeh. *Applied Organo metalic Chemistry* 2016(30) 835–842
45. One-pot synthesis of benzamide over a robust tandem catalyst based on center radially fibrous silica encapsulated TS-1. Hong-gen Peng, Le Xu, Haihong Wu, Kun Zhang and Peng Wu. *Chemical Communications.*, 2013 (49) 2709-2711

NANOMATERIALS - ALUMINUM (Compounds)

13-1400	Aluminum oxide nanopowder (1344-28-1) Al ₂ O ₃ ; FW: 101.96; white pwdr. Note: Average Particle Size (APS): 3 nm	50g 250g
---------	--	-------------

Specific Surface Area (BET): ≤275 m²/g; **True Density:** 3.9 g/cc; **Crystallite Size:** Amorphous; **Mean Aggregate Size:** 1.5 µm; **Average Pore Diameter:** 28Å; **Loss on Ignition:** 2.1%; **Total Pore Volume:** ≥0.15 cc/g; **Al Content (Based on Metal):** >99.8%; **Bulk Density:** 0.5 g/cc

13-1410	Aluminum oxide nanopowder, 99.9% (1344-28-1) Al ₂ O ₃ ; FW: 101.96; white pwdr.; SA: >15 m ² /g; d. 3.9 Note: Average Particle Size (APS) <80nm	50g
---------	--	-----

NEW

NANOMATERIALS - CADMIUM (Compounds)

StremDots™ Quantum Dots (1306-24-7)	5ml
air sensitive, (store cold)	25ml

Note: Cadmium selenide StremDots™ quantum dot (core) kit components. See page 58

48-1011	Cadmium selenide StremDots™ quantum dot (CdSe core), 50umol/L in hexanes, 525nm peak emission (1306-24-7) CdSe; orange liq.
48-1017	Cadmium selenide StremDots™ quantum dot (CdSe core), 50umol/L in hexanes, 550nm peak emission (1306-24-7) CdSe; red-orange liq.
48-1023	Cadmium selenide StremDots™ quantum dot (CdSe core), 50umol/L in hexanes, 575nm peak emission (1306-24-7) CdSe; red liq.
48-1030	Cadmium selenide StremDots™ quantum dot (CdSe core), 50umol/L in hexanes, 600nm peak emission (1306-24-7) red liq.
48-1035	Cadmium selenide StremDots™ quantum dot (CdSe core), 50umol/L in hexanes, 625nm peak emission (1306-24-7) red liq.
96-0800	Cadmium selenide StremDots™ quantum dot (CdSe core) kit, 50umol/L in hexanes, 525-625nm peak emissions (1306-24-7) See page 58

StremDots™ Quantum Rods (1306-24-7)	0.5ml
(store cold)	2ml

Store at 2-8°C in dark under inert atmosphere. Do not freeze. Stable for >12 months

Note: Cadmium selenide/cadmium sul ide StremDots™ quantum rod kit components. See page 58

48-1053	Cadmium selenide/cadmium sulfide StremDots™ quantum rod (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes, 560nm peak emission (1306-24-7) CdSe/CdS; dispersed, yellow solution; (store cold)
48-1056	Cadmium selenide/cadmium sulfide StremDots™ quantum rod (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes, 590nm peak emission (1306-24-7) CdSe/CdS; dispersed, orange solution; (store cold)
48-1059	Cadmium selenide/cadmium sulfide StremDots™ quantum rod (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes, 620nm peak emission (1306-24-7) CdSe/CdS; dispersed, red solution; (store cold)
96-0813	Cadmium selenide/cadmium sulfide StremDots™ quantum rod kit (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes, 560nm, 590nm, 620nm peak emissions (1306-24-7) See page 58

NANOMATERIALS - CADMIUM (Compounds)

CdSe/ZnS - Solid Quantum Dots

Note: Each product below is a group of highly purified CdSe/ZnS quantum dots in solid form. The surface ligand is octadecylamine. The quantum dots can be dispersed in most organic solvents such as toluene, chloroform, and hexane. These quantum dots are specifically designed as emitters for optoelectronic applications such as LEDs.

10mg
50mg

48-1618	Cadmium selenide/Zinc sulfide quantum dots in solid form, Emission peak: 520nm, HAZ FWHM <35nm, QY >50% orange to red pwdr.
---------	---

Technical Note:

1. See 48-1614 (page 25)

48-1620	Cadmium selenide/Zinc sulfide quantum dots in solid form, Emission peak: 560nm, HAZ FWHM <35nm, QY >50% orange pwdr.
---------	--

Technical Note:

1. See 48-1614 (page 25)

48-1622	Cadmium selenide/Zinc sulfide quantum dots in solid form, Emission peak: 600nm, HAZ FWHM <25nm, QY >50% red pwdr.
---------	---

Technical Note:

1. See 48-1614 (page 25)

48-1624	Cadmium selenide/Zinc sulfide quantum dots in solid form, Emission peak: 630nm, HAZ FWHM <25nm, QY >50% red pwdr.
---------	---

Technical Note:

1. See 48-1614 (page 25)

CdSe/ZnS - Solid Quantum Dots with Amine in water

Note: A water-soluble CdS/ZnS or CdSSe/ZnS core/shell quantum dots with amphiphilic polymer and PEG coating. Reactive group is an amine.

2nmole
10nmole

48-1666	Cadmium selenide/Zinc sulfide core/shell quantum dots with Amine in water HAZ Emission peak: 580 nm FWHM <25nm QY>50% orange liq
---------	--

Technical Note:

1. See 48-1658 (page 26)

48-1668	Cadmium selenide/Zinc sulfide core/shell quantum dots with Amine in water HAZ Emission peak: 620 nm FWHM <25nm QY>50% red liq.
---------	--

Technical Note:

1. See 48-1658 (page 26)

CdSe/ZnS - Solid Quantum Dots with carboxylic acid in water

Note: A water-soluble CdSe/ZnS core/shell quantum dots with amphiphilic polymer and PEG coating. Reactive group is a carboxylic acid.

4nmole
20nmole

48-1638	Cadmium selenide/Zinc sulfide core/shell quantum dots with carboxylic acid in water HAZ Emission peak: 580 nm FWHM <25nm QY>50% orange liq.
---------	---

Technical Note:

1. See 48-1630 (page 26)

48-1640	Cadmium selenide/Zinc sulfide core/shell quantum dots with carboxylic acid in water HAZ Emission peak: 620 nm FWHM <25nm QY>50% red liq.
---------	--

Technical Note:

1. See 48-1630 (page 26)

NANOMATERIALS - CADMIUM (Compounds)

CdSe/ZnS - Solid Quantum Dots with PEG in water

Note: A water-soluble CdSe/ZnS core/shell quantum dots with amphiphilic polymer and PEG coating. Reactive group is a carboxylic acid.

2nmole

10nmole

48-1652	Cadmium selenide/Zinc sulfide core/shell quantum dots with PEG in water
HAZ	Emission peak: 580 nm FWHM <25nm QY>50% orange liq.

Technical Note:

1. See 48-1644 (page 27)

48-1654	Cadmium selenide/Zinc sulfide core/shell quantum dots with PEG in water
HAZ	Emission peak: 620 nm FWHM <25nm QY>50% red liq.

Technical Note:

1. See 48-1644 (page 27)

CdSSe/ZnS - Solid Quantum Dots

Note: Group of highly purified CdSSe/ZnS quantum dots in solid form. The surface ligand is oleic acid. The quantum dots can be dispersed in most organic solvents such as toluene, chloroform, and hexane. These quantum dots are specifically designed as emitters for optoelectronic applications such as LEDs.

10mg

50mg

48-1602	Cadmium sulfide selenide/Zinc sulfide quantum dots in solid form
HAZ	Emission peak: 450nm, FWHM <35nm, QY >50% yellow pwdr.

48-1604	Cadmium sulfide selenide/Zinc sulfide quantum dots in solid form
HAZ	Emission peak: 490nm, FWHM <35nm, QY >50% green pwdr.

48-1606	Cadmium sulfide selenide/Zinc sulfide quantum dots in solid form
HAZ	Emission peak: 540nm, FWHM <35nm, QY >50% orange pwdr.

48-1608	Cadmium sulfide selenide/Zinc sulfide quantum dots in solid form
HAZ	Emission peak: 600nm, FWHM <35nm, QY >50% red pwdr.

48-1610	Cadmium sulfide selenide/Zinc sulfide quantum dots in solid form
HAZ	Emission peak: 630nm, FWHM <35nm, QY >50% red pwdr.

48-1612	Cadmium sulfide selenide/Zinc sulfide quantum dots in solid form
HAZ	Emission peak: 665nm, FWHM <35nm, QY >50% brown pwdr.

CdSSe/ZnS - Solid Quantum Dots with Amine in water

Note: A water-soluble CdS/ZnS or CdSSe/ZnS core/shell quantum dots with amphiphilic polymer and PEG coating. Reactive group is an amine.

2nmole

10nmole

48-1662	Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with Amine in water
HAZ	Emission peak: 490 nm FWHM <35nm QY>50% yellow liq

Technical Note:

1. See 48-1658 (page 26)

48-1664	Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with Amine in water
HAZ	Emission peak: 525 nm FWHM <35nm QY>50% yellow-green liq

Technical Note:

1. See 48-1658 (page 26)

48-1670	Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with Amine in water
HAZ	Emission peak: 665 nm FWHM <35nm QY>50% dark red liq.

Technical Note:

1. See 48-1644 (page 27)

NANOMATERIALS - CADMIUM (Compounds)

CdSSe/ZnS - Solid Quantum Dots with carboxylic acid in water

Note: A water-soluble CdSSe/ZnS core/shell quantum dots with amphiphilic polymer and PEG coating.

Reactive group is a carboxylic acid.

4nmole

20nmole

48-1634 Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with carboxylic acid in water
HAZ Emission peak: 490 nm FWHM <35nm QY>50%
yellow liq.

Technical Note:

1. See 48-1630 (page 26)

48-1636 Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with carboxylic acid in water
HAZ Emission peak: 525 nm FWHM <35nm QY>50%
yellow-green liq.

Technical Note:

1. See 48-1630 (page 26)

48-1642 Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with carboxylic acid in water
HAZ Emission peak: 665 nm FWHM <35nm QY>50%
dark red liq.

Technical Note:

1. See 48-1630 (page 26)

CdSSe/ZnS - Solid Quantum Dots with PEG in water

Note: A water-soluble CdSSe/ZnS core/shell quantum dots with amphiphilic polymer and PEG coating.

2nmole

10nmole

Reactive group is a carboxylic acid.

48-1648 Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with PEG in water
HAZ Emission peak: 490 nm FWHM <35nm QY>50%
yellow liq.

Technical Note:

1. See 48-1644 (page 27)

48-1650 Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with PEG in water
HAZ Emission peak: 525 nm FWHM <35nm QY>50%
yellow-green liq.

Technical Note:

1. See 48-1644 (page 27)

48-1656 Cadmium sulfide selenide/Zinc sulfide core/shell quantum dots with PEG in water
HAZ Emission peak: 665 nm FWHM <35nm QY>50%
dark red liq.

Technical Note:

1. See 48-1644 (page 27)

CdS/ZnS - Solid Quantum Dots

10mg

50mg

48-1614 Cadmium sulfide/Zinc sulfide quantum dots in solid form, Emission peak: 400nm, FWHM <35nm, QY>50%
HAZ white pwdr.

Technical Note:

1. Group of highly purified CdS/Zns or CdSe/ZnS quantum dots in solid form. The surface ligand is octadecylamine. The quantum dots can be dispersed in most organic solvents such as toluene, chloroform, and hexane. These quantum dots are specifically designed as emitters for optoelectronic applications such as LEDs.

References:

1. *The Journal of Physical Chemistry C*, **2009**, 113, 1886
2. *ACS Nano*, **2009**, 3, 737
3. *Journal of Applied Physics*, **2009**, 105, 034312
4. *IEEE Photonics Technology Letters*, **2008**, 20, 1998
5. *Optical Letters*, **2008**, 33, 2437
6. *Applied Physics Letters*, **2008**, 92, 023111
7. *Journal of Experiment NanoScience*, **2007**, 2, 13
8. *Nanotechnology*, **2007**, 18, 025403
9. *Applied Physics Letters*, **2007**, 91, 023102
10. *Nature Photonics*, **2007**, 1, 717
11. *Nano Letters*, **2007**, 7, 3803

NANOMATERIALS - CADMIUM (Compounds)

CdS/ZnS - Solid Quantum Dots

10mg
50mg

48-1616 Cadmium sulfide/Zinc sulfide quantum dots in solid form, Emission peak: 420nm,
HAZ FWHM <35nm, QY >50%
yellow pwdr.

Technical Note:

1. See 48-1614 (page 25)

CdS/ZnS - Solid Quantum Dots with Amine in water

2nmole

10nmole

Note: A water-soluble CdS/ZnS or CdSSe/Zn core shell quantum dots with amphiphilic polymer and PEG coating. Reactive group is an amine.

48-1658 Cadmium sulfide/Zinc sulfide core/shell quantum dots with Amine in water
HAZ Emission peak: 400 nm FWHM <35nm QY>50%
light yellow liq.

Technical Notes:

1. Zeta potential of QSA is from -20mV to +10 mV.
2. Organic layers consist of a monolayer of oleic acid/octadecylamine, a monolayer of amphiphilic polymer, and a monolayer of PEG.
3. Total thickness of organic layers is ~6 nm.
4. The hydrodynamic size of the QDs is about 12-14 nm larger than their inorganic core size as measured by TEM.
5. QSA is very stable in most buffer solutions in the pH range of 5-10, and can survive autoclaving processes of 121°C for 30 mins.
6. Amine density is low due to the long PEG chain.

References:

1. *Small, 2009, 5, 235*

48-1660 Cadmium sulfide/Zinc sulfide core/shell quantum dots with Amine in water
HAZ Emission peak: 450 nm FWHM <35nm QY>50%
yellow liq.

Technical Note:

1. See 48-1658 (page 26)

CdS/ZnS - Solid Quantum Dots with carboxylic acid in water

4nmole

20nmole

Note: A water-soluble CdS/ZnS core/shell quantum dots with amphiphilic polymer and PEG coating. Reactive group is a carboxylic acid

48-1630 Cadmium sulfide/Zinc sulfide core/shell quantum dots with carboxylic acid in water
HAZ Emission peak: 400 nm FWHM <35nm QY>50%
light yellow liq.

Technical Notes:

1. Zeta potential of QSA is from -30mV to -50 mV.
2. Organic layers consist of a monolayer of oleic acid/octadecylamine and a monolayer of amphiphilic polymer.
3. Total thickness of organic layers is ~4 nm.
4. The hydrodynamic size of the QDs is about 8-10 nm larger than their inorganic core size as measured by TEM.
5. QSH is very stable in most buffer solutions in the pH range of 5-10, and can survive autoclaving processes of 121°C for 30 mins.

References:

1. *Small, 2009, 5, 235*

48-1632 Cadmium sulfide/Zinc sulfide core/shell quantum dots with carboxylic acid in water
HAZ Emission peak: 450 nm FWHM <35nm QY>50%
yellow liq.

Technical Note:

1. See 48-1630 (page 26)

NANOMATERIALS - CADMIUM (Compounds)

CdS/ZnS - Solid Quantum Dots with PEG in water

Note: A water-soluble alloy CdSe/ZnS or CdSe/Zn core/shell quantum dots with amphiphilic polymer.

Their reactive group is a carboxylic acid.

2nmole

10nmole

48-1644 Cadmium sulfide/Zinc sulfide core/shell quantum dots with PEG in water

HAZ Emission peak: 400 nm FWHM <35nm QY>50%

light yellow liq.

Technical Notes:

1. Zeta potential of QSA is from -30mV to -50 mV.
2. Total thickness of organic layers is ~4 nm.
3. The organic layers consist of a monolayer of oleic acid/octadecylamine and a monolayer of amphiphilic polymer.
4. The hydrodynamic size of the quantum dots is about 8-10 nm larger than their inorganic core size as measured by TEM.
5. The product is stable in most buffer solutions in the pH range of 5-10.

48-1646 Cadmium sulfide/Zinc sulfide core/shell quantum dots with PEG in water

HAZ Emission peak: 450 nm FWHM <35nm QY>50%

yellow liq.

Technical Note:

1. See 48-1644 (page 27)

NANOMATERIALS - CARBON (Elemental Forms)

Carbon, Graphene

06-0274 Graphene film, monolayer, on copper foil (1cm x 1cm)
(1034343-98-0)
C; foil

2pcs

100% coverage, >95% single atomic layer

Average grain (crystal/domain) size: >~100 micron

Average sheet resistance (on non-conductive substrate): 400 Ω/sq (+/- 200 Ω/sq)

Average transmission: T >96% (on transparent substrate, i.e. ~4% lower than substrate T)

06-0310 Graphene film, monolayer, on Si/SiO₂ wafer (1cm x1cm), by CVD
(1034343-98-0)
C; FW: 12.011; wafer

1pc

06-0323 Graphene oxide (0.8-1.2nm thick x 1-15 microns wide, made by the Staudenmaier Method)
black pwdr.; SA: 5-10 m²/g

250mg
1g

06-2545 Graphene oxide (4mg/ml water dispersion) (1034343-98-0)
yellow-brown liq. dispersion

50ml
250ml

Physical Properties:

Form: Dispersion of graphene oxide sheets; *Sheet dimension:* Variable; *Color:* Yellow-brown; *Dispersibility:* Polar solvents; *Solvent:* Water; *pH:* 2.2-2.5; *Concentration:* 4 mg/mL; *Monolayer content (measured in 0.5 mg/mL):* >95%*

*Note: 4 mg/mL tends to agglomerate the GO flakes and dilution followed by slight sonication is required in order to obtain a higher percentage of monolayer flakes

Elemental Analysis: (sample preparation: 2g of 4 wt% GO in water were dried under vacuum at 60°C overnight)

Carbon: 49-56%; **Hydrogen:** 0-1%; **Nitrogen:** 0-1%; **Oxygen:** 41-50%; **Sulfur:** 0-2%

Quality Control:

Amount of residue on evaporation

pH control

Elemental analysis

Applications: Graphene/polymer composite materials, batteries, biomedical, solar cells, supercapacitors, support for metallic catalysts, low permeability materials, biosensors, multifunctional materials, graphene research

References:

1. *J. Mater. Chem.*, 2011, 21, 9762.
2. *Environ. Sci. Technol.*, 2013, 47, 3715.
3. *Phys. Chem. Chem. Phys.*, 2013, 15, 2321.

06-2530 Graphene oxide (4mg/ml water dispersion) - low Mn. (1034343-98-0)

100ml

NEW C; brown liq.

500ml

Note: Diameter: 5-30 micron flakes.

NANOMATERIALS - CARBON (Elemental Forms)

Carbon, Graphene

06-2550	Graphene oxide, reduced (1034343-98-0) black pwdr.	250mg 1g
---------	--	-------------

Physical Properties:

Form: powder; **Reduction method:** chemically reduced; **Sheet dimension:** variable; **Color:** black; **Solubility:** insoluble; **Dispersability:** <0.1 mg/mL in NMP, DMF, DMSO; **Humidity (Karl Fisher, TGA):** 3.7-4.2%; **Electrical conductivity:** 666,7 S/m (measured in a 20 nm film thickness); **BET surface area:** 422.69 - 499.85 m²/g; **Density:** 1.91 g/cm³

Elemental Analysis: (sample preparation: 2g of 4 wt% GO in water were dried under vacuum at 60°C overnight)

Carbon: 77-87%; **Hydrogen:** 0-1%; **Nitrogen:** 0-1%; **Oxygen:** 13-22%; **Sulfur:** 0%

Quality Control: Elemental analysis

Applications: Batteries, biomedical, solar cells, supercapacitors, printable graphene electronics, graphene research

References:

1. *Nano Letters*, **2010**, *10*, 92.
2. *J. Phys. Chem. Lett.*, **2013**, *4*, 1347.

06-0318	Graphene powder (1-5 layers thick x 0.5-5 microns wide, surface area 650-750 m ² /g) (1034343-98-0) C; FW: 12.011; black pwdr.	250mg 1g
06-0313	Graphene powder (single layer, surface area 400-1000 m ² /g) (1034343-98-0) C; FW: 12.011; black pwdr.	50mg
06-2510	Monolayer Graphene on Cu (10 mm x 10 mm) (1034343-98-0) C; FW: 12.011; wafer	4pcs

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); **Appearance:** Transparent; **Transparency:** >97%; **Coverage:** 98%; **Layers:** 1; **Thickness (theoretical):** 0.345 nm; **FET Electron Mobility on Al₂O₃:** 2000 cm²/Vs; **FET Electron Mobility on SiO₂:** 4000 cm²/Vs; **Sheet Resistance on SiO₂/Si:** 410-490 Ω/sq (1 cm x 1 cm); **Grain size:** Up to 10 μm

Substrate Cu foil:

Thickness: 18 μm

Pretreated for easier bottom layer removal: Monolayer graphene on the back side of Copper is partially removed, but not completely, so an additional treatment like RIE is needed before transfer to eliminate the bottom layer totally

Applications: Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings

Quality Control: Raman Spectroscopy and Optical Microscopy

References:

1. *J. Electrochem. Soc.*, **2012**, *159*, A752.
2. *J. Mater. Chem. A.*, **2013**, *1*, 3177.

06-2518	Monolayer Graphene on Cu (60 mm x 40 mm) (1034343-98-0) C; FW: 12.011; wafer	1pc
---------	---	-----

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); **Appearance:** Transparent; **Transparency:** >97%; **Coverage:** 95%; **Layers:** 1; **Thickness (theoretical):** 0.345 nm; **FET Electron Mobility on Al₂O₃:** 2000 cm²/Vs; **FET Electron Mobility on SiO₂:** 4000 cm²/Vs; **Sheet Resistance on SiO₂/Si:** 410-490 Ω/sq (1 cm x 1 cm); **Grain size:** Up to 10 μm

Substrate Cu foil:

Thickness: 18 μm

Pretreated for easier bottom layer removal: Monolayer graphene on the back side of Copper is partially removed, but not completely, so an additional treatment like RIE is needed before transfer to eliminate the bottom layer totally

Applications: Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings

Quality control: Raman Spectroscopy and Optical Microscopy

References:

1. *J. Electrochem. Soc.*, **2012**, *159*, A752.
2. *J. Mater. Chem. A.*, **2013**, *1*, 3177.

NANOMATERIALS - CARBON (Elemental Forms)

Carbon, Graphene

06-2523	Monolayer Graphene on Cu with PMMA coating (60mm x 40mm) (1034343-98-0)	1pc
	C; FW: 12.011; wafer	

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); **Appearance:** Transparent; **Transparency:** >97%; **Coverage:** 95%; **Layers:** 1; **Thickness (theoretical):** 0.345 nm; **FET Electron Mobility on Al_2O_3 :** 2000 cm^2/Vs ; **FET Electron Mobility on SiO_2 :** 4000 cm^2/Vs ; **Sheet Resistance on SiO_2/Si :** 410-490 Ω/sq (1 cm x 1 cm); **Grain size:** Up to 10 μm

Substrate Cu foil:

Thickness: 18 μm

Pretreated for easier bottom layer removal: Monolayer graphene on the back side of Copper is partially removed, but not completely, so an additional treatment like RIE is needed before transfer to eliminate the bottom layer totally

Applications: Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings

Quality control: Raman Spectroscopy and Optical Microscopy

References:

1. *J. Electrochem. Soc.*, **2012**, 159, A752.
2. *J. Mater. Chem. A.*, **2013**, 1, 3177.

06-2534	Monolayer Graphene on SiO_2/Si (10mm x 10mm) (1034343-98-0)	4pc
	C; wafer	

Physical Properties:

Growth Method: Chemical Vapor Deposition (CVD synthesis); **Appearance:** Transparent; **Transparency:** >97%; **Coverage:** 95%; **Layers:** 1; **Thickness (theoretical):** 0.345 nm; **FET Electron Mobility on Al_2O_3 :** 2000 cm^2/Vs ; **FET Electron Mobility on SiO_2 :** 4000 cm^2/Vs ; **Sheet Resistance on SiO_2/Si :** 410-490 Ω/sq (1 cm x 1 cm); **Grain size:** Up to 10 μm

Substrate Cu foil:

Dry Oxide Thickness: 285-315 nm; **Type/Dopant:** P/Bor; **Orientation:** <100>; **Resistivity:** <0.005 Ohm·cm; **Thickness:** 505-545 μm ; **Front surface:** single side polished; **Back surface:** etched; **Particles:** <10@0.3 μm

Applications: Flexible batteries, electronics, aerospace, MEMS and NEMS, Microactuators, Conductive coatings

Quality control: Raman Spectroscopy and Optical Microscopy

References:

1. *J. Electrochem. Soc.*, **2012**, 159, A752
2. *J. Mater. Chem. A.*, **2013**, 1, 3177

06-0365	Monolayer High Strength Metallurgical Graphene, HSMG®, on GLASS (10x10mm) (1034343-98-0)	1pc
NEW	C; FW: 12.011; Colorless solid	

Note: HSMG® Sold under license for research purposes only.

U.S. Patent no. 9,284,640 B2.

06-0345	Monolayer High Strength Metallurgical Graphene, HSMG®, on PMMA (10x10mm) (1034343-98-0)	1pc
NEW	C; FW: 12.011; Colorless solid	

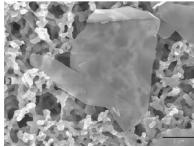
Note: HSMG® Sold under license for research purposes only.

U.S. Patent no. 9,284,640 B2.

06-0355	Monolayer High Strength Metallurgical Graphene, HSMG®, on PMMA (25x25mm) (1034343-98-0)	1pc
NEW	C; FW: 12.011; Colorless solid	

Note: HSMG® Sold under license for research purposes only.

U.S. Patent no. 9,284,640 B2.


06-0360	Monolayer High Strength Metallurgical Graphene, HSMG®, on PMMA (50x50mm) (1034343-98-0)	1pc
NEW	C; FW: 12.011; Colorless solid	

Note: HSMG® Sold under license for research purposes only.

U.S. Patent no. 9,284,640 B2.

NANOMATERIALS - CARBON (Elemental Forms)

Graphene Nanoplatelets

06-0222	Graphene nanoplatelets, (2-10nm thick x ~5 microns wide) (1034343-98-0) C; black solid	5g 25g
06-0210	Graphene nanoplatelets (6-8 nm thick x 5 microns wide) (1034343-98-0) C; black platelet Note: Graphene nanoplatelets are unique nanoparticles consisting of short stacks of graphene sheets having a platelet shape. They have an average thickness of approximately 6 - 8 nanometers and a typical surface area of 120 to 150 m ² /g. The unique size and platelet morphology of the graphene nanoplatelets makes these particles especially effective at providing barrier properties and improving mechanical properties, while their pure graphitic composition makes them excellent electrical and thermal conductors.	25g 100g
Technical Note:		
1. For detailed note visit www.strem.com .		
06-0215	Graphene nanoplatelets (6-8 nm thick x 15 microns wide) (1034343-98-0) C; black platelet	25g 100g
Technical Note:		
1. See 06-0210 (page 30)		
06-0220	Graphene nanoplatelets (6-8 nm thick x 25 microns wide) (1034343-98-0) C; black platelet	25g 100g
Technical Note:		
1. See 06-0210 (page 30)		
06-0225	Graphene nanoplatelets aggregates (sub-micron particles, surface area 300m ² /g) (1034343-98-0) black platelet Note: Graphene nanoplatelet aggregates are unique nanoparticles consisting of short stacks of graphene sheets having a platelet shape. They typically consist of aggregates of sub-micron platelets that have a particle diameter of less than 2 microns and a typical particle thickness of a few nanometers, depending on the surface area. The unique size and platelet morphology of the graphene nanoplatelets makes these particles especially effective at providing barrier properties and improving mechanical properties, while their pure graphitic composition makes them excellent electrical and thermal conductors.	25g 100g
Technical Note:		
1. For detailed note visit www.strem.com .		
06-0230	Graphene nanoplatelets aggregates (sub-micron particles, surface area 500m ² /g) (1034343-98-0) black platelet	25g 100g
Technical Note:		
1. See 06-0225 (page 30)		
06-0235	Graphene nanoplatelets aggregates (sub-micron particles, surface area 750m ² /g) (1034343-98-0) black platelet	25g 100g

NANOMATERIALS - CARBON (Elemental Forms)

Graphene Quantum Dots (1034343-98-0)

light sensitive, (store cold)

Note: Particle diameter: <5 nm. Sold in collaboration with Dotz Nano Ltd. for research purposes only.

Suggested use within 6 months of purchase. Do not freeze. Store in DARK.

06-0330 Graphene Quantum Dots (GQDs), Aqua-Green Luminescent

100mg

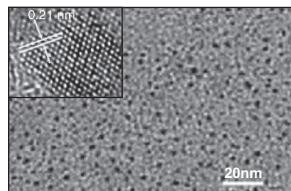
(1034343-98-0)

C; dark red-brown pwdr.

Suggested Applications:

Graphene quantum dots (GQDs), sheets of few-layered graphene and lateral dimensions smaller than 100nm possess strong quantum confinement and edge effects. Thus, they possess unique physical properties such as strong photoluminescence, which can be tailored for specific applications by controlling their size, shape, defects and functionality.

In contrast to classic QDs, such as metal or silicon quantum dots, GQDs are biocompatible, photostable and inherit superior thermal, electrical and mechanical properties from the graphene. These features can greatly contribute to various state-of-the-art applications: optical brighteners, taggants for security applications¹, bioimaging markers², fluorescent polymers³, antibacterial⁴, antifouling⁵, and disinfection systems⁶, heavy metals⁷, humidity and pressure⁸ sensors, batteries⁹, flash memory devices¹⁰, photovoltaic devices¹¹ and light-emitting diodes¹².


Item #	Photoluminescence			
	QY* *	λ_{max} *	Max emission	FWHM *
06-0330 / 06-0332	>17%	485 nm	525 nm	70 nm
06-0334 / 06-0336	>65%	350 nm	445 nm	65 nm
06-0340	>25%	420 nm	490 nm	80 nm

Abbreviations

QY*	Quantum Yield
λ_{max}	Maximum excitation wavelength
FWHM	Full width at half maximum

References:

1. <http://onlinelibrary.wiley.com/doi/10.1002/anie.201206791/abstract>
2. <http://onlinelibrary.wiley.com/doi/10.1002/ppsc.201400219/abstract>
3. <http://pubs.acs.org/doi/abs/10.1021/acsami.5b06057>
4. <http://pubs.acs.org/doi/abs/10.1021/acsami.6b01765>
5. <http://www.nature.com/articles/srep20142>
6. <http://pubs.acs.org/doi/abs/10.1021/nn501640q>
7. <http://www.sciencedirect.com/science/article/pii/S0013468615000468>
8. <http://pubs.acs.org/doi/abs/10.1021/nl4003443>
9. <http://pubs.acs.org/doi/abs/10.1021/nl504038s>
10. <http://iopscience.iop.org/article/10.1088/0957-4484/25/25/255203/meta>
11. <http://onlinelibrary.wiley.com/doi/10.1002/anie.200906291/abstract>
12. <http://link.springer.com/article/10.1007/s10853-012-7016-8>

06-0332 Graphene Quantum Dots (GQDs) in water, Aqua-Green Luminescent (1034343-98-0) 100ml

C; cloudy orange liq.

Note: Concentration: 1 mg/ml.

Technical Note:

1. See 06-0330 (page 31)

06-0334 Graphene Quantum Dots (GQDs), Blue Luminescent (1034343-98-0) 100mg

C; dark brown pwdr.

Technical Note:

1. See 06-0330 (page 31)

06-0336 Graphene Quantum Dots (GQDs) in water, Blue Luminescent (1034343-98-0) 100ml

C; cloudy colorless liq.

Note: Concentration: 1 mg/ml.

Technical Note:

1. See 06-0330 (page 31)

06-0340 Graphene Quantum Dots (GQDs) in water, Cyan Luminescent (1034343-98-0) 100ml

C; cloudy brown liq.

Note: Concentration: 1 mg/ml.

Technical Note:

1. See 06-0330 (page 31)

NANOMATERIALS - CARBON (Elemental Forms)

Graphene Quantum Dots (1034343-98-0)

light sensitive, (store cold)

Note: Particle diameter: <5 nm. Sold in collaboration with Dotz Nano Ltd. for research purposes only.

Suggested use within 6 months of purchase. Do not freeze. Store in DARK.

96-7410 Graphene Quantum Dots (GQDs) Master Kit (1034343-98-0)
See page 61

96-7425 Graphene Quantum Dots (GQDs) Mini Kit (Powders) (1034343-98-0)
See page 62

96-7420 Graphene Quantum Dots in water (GQDs) Mini Kit (Liquids) (1034343-98-0)
See page 62

Carbon Nanotubes

06-0440 Carbon nanotube array, multi-walled, on quartz (diameter= 100nm, length=30 microns) (308068-56-6)
black microfibers;
(diameter=100nm, length=30microns)

1pc

Technical Note:

1. Arrays grown on 10x10x1mm quartz substrate using a single source CVD process that yields vertically aligned MWNTs (< 1% catalyst impurity). Arrays are 30μm tall (± 3μm) and are composed of MWNTs 100nm in diameter (± 10nm). Arrays up to 150μm can be provided on request.

06-0470 Carbon nanotubes, multi-walled (diameter = ~140nm, length = ~7 microns) (308068-56-6)
>90% nanotubes
black pwdr.

1g
5g

Technical Note:

1. Produced by chemical vapor deposition. Typical metal content is <0.1%.

06-0475 Carbon nanotubes, multi-walled (diameter = ~20-25nm, length = ~1-5 microns) (308068-56-6)
(85% nanotubes)
black pwdr.

250mg
1g

Technical Note:

1. Produced by chemical vapor deposition. Typical metal content is 4-5 wt %.

06-0720 Carbon nanotubes, multi-walled, arc-produced (diameter = 2-50nm, length = >2 microns) (55-65wt% nanotubes) (308068-56-6)
black pwdr.

250mg
1g

Technical Note:

1. Arc-produced, multi-walled carbon nanotubes contain 55-65 wt% nanotubes and 35-45wt% graphite nanoparticles. The tubes have a diameter distribution of 2-50 nm, and a typical length of >2 microns (straight tubes). The chemical composition is 100% carbon, with no metal impurities. Because the nanotubes are grown at very high temperatures (3000-4000°C), the product contain far less defects than nanotubes produced by other methods. The nanotubes are stable in air up to 700°C.

06-0504 Carbon nanotubes, multi-walled, as produced cathode deposit (308068-56-6)
pieces

1g
5g

06-0505 Carbon nanotubes, multi-walled, core material (308068-56-6)
pieces (20-40% nanotubes)

1g
5g

06-0506 Carbon nanotubes, multi-walled, ground core material (308068-56-6)
-270 mesh pwdr. (20-40%nanotubes)

250mg
1g
5g

06-0508 Carbon nanotubes, single-walled/double-walled, 90% (308068-56-6)
pwdr.

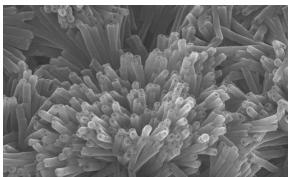
250mg
1g

Technical Note:

1. This product is nanotubes, single-walled/double-walled, 90%. The tubes are 1-2nm in diameter with lengths of 5-30 microns. Ash is <1.5wt%.

NANOMATERIALS - CARBON (Elemental Forms)

Carbon Nanotubes


06-1060 Polydiacetylene nanotube (PDNT-12-8-22Br)

blue solid

Note: Sold in collaboration with LIG Sciences for research purposes only. US Patent No. 7,666,911.

Technical Note:

1. Polydiacetylene Nanotubes (PDNT) are self-assembled diacetylene nanotubes comprised of cross-linking of conjugated double and triple bonds. They are produced using a proprietary molecular self-assembly process that results in remarkably uniform, pure, air-stable blue nanotubes (ID 34nm, OD 98nm and length 1-3 μ m). PDNT nanotubes exhibit thermochromism either on different substrates or in solvents. This unique thermo- and mechano-chromic behavior has been demonstrated to be completely reversible for hundreds cycles.

100mg
500mg

NANOMATERIALS - CERIUM (Compounds)

58-0860 Cerium(IV) oxide [contains some Ce(III)] in water at pH = 3.5 +/- 0.75

HAZ (CEO-W320) (1306-38-3)

CeO₂; FW: 172.12; red-brown mixture; d. 1.23
(store cold)

Note: Store at 5 to 25°C. Do not freeze. Suggested use within 12 months of receipt.
Sold in collaboration with Cerion for research purposes only.

25g
100g
500g

% Solids: 20 +/- 0.5%

pH: 3.5 +/- 0.75

Useable pH Range: 2-5

Mean Number Weighted Particle Diameter: 3.0 nm (by Dynamic Light Scattering)

Polydispersity Index: <0.25

Chemical Composition (particles): >99.5% CeO₂

58-1400 Cerium(IV) oxide nanopowder (1306-38-3)

CeO₂; FW: 172.12; yellow pwdr.

25g
100g

NANOMATERIALS - COPPER (Elemental Forms)

29-0092 Copper nanoparticles, pure, (<20nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-50-8)

25ml
100ml

brown liq.

Note: Made to order. Manufactured by laser ablation. Store at room temperature (up to 25°C). Do not freeze. Shelf life 12 months. Sold in collaboration with Particular® for research purposes only.

NANOMATERIALS - COPPER (Compounds)

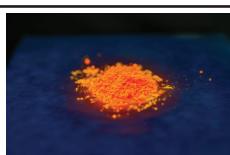
Copper Indium Disulfide/Zinc Sulfide Quantum Dots (927198-36-5)

50mg
250mg

Note: Particle size: 5-10 nm. Recommend long-term storage in dark, under inert atmosphere. Sold under a distribution agreement with UbiQD, Inc. for research purposes only. US Patent No. US9748422. Suggested use within 12 months of receipt.

29-8500 Copper Indium Disulfide/Zinc Sulfide Quantum Dots, Peak Emission 550nm ± 10nm, QY > 75% (927198-36-5)

NEW CulnS₂ZnS; yellow pwdr.


Note: FWHM 250nm ± 20nm.

29-8510 Copper Indium Disulfide/Zinc Sulfide Quantum Dots, Peak Emission 590nm ± 10nm, QY > 75% (927198-36-5)

NEW CulnS₂ZnS; orange pwdr.

Note: FWHM 120nm ± 20nm.

NANOMATERIALS - COPPER (Compounds)

Copper Indium Disulfide/Zinc Sulfide Quantum Dots (927198-36-5)

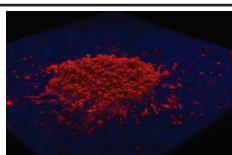
50mg

250mg

Note: Particle size: 5-10 nm. Recommend long-term storage in dark, under inert atmosphere. Sold under a distribution agreement with UbiQD, Inc. for research purposes only. US Patent No. US9748422. Suggested use within 12 months of receipt.

29-8520

**Copper Indium Disulfide/Zinc Sulfide Quantum Dots,
Peak Emission $630\text{nm} \pm 10\text{nm}$, QY > 75% (927198-36-5)**
CuInS₂ZnS; red pwdr.
Note: FWHM $125\text{nm} \pm 20\text{nm}$.


NEW

29-8530

**Copper Indium Disulfide/Zinc Sulfide Quantum Dots,
Peak Emission $680\text{nm} \pm 10\text{nm}$, QY > 75% (927198-36-5)**
CuInS₂ZnS; brown pwdr.
Note: FWHM $130\text{nm} \pm 20\text{nm}$.

NEW

29-8540

**Copper Indium Disulfide/Zinc Sulfide Quantum Dots,
Peak Emission $800\text{nm} \pm 10\text{nm}$, QY > 75% (927198-36-5)**
CuInS₂ZnS; black pwdr.
Note: FWHM $180\text{nm} \pm 20\text{nm}$.

NEW

29-8550

**Copper Indium Disulfide/Zinc Sulfide Quantum Dots,
Peak Emission $950\text{nm} \pm 10\text{nm}$, QY > 75% (927198-36-5)**
CuInS₂ZnS; black pwdr.
Note: FWHM $250\text{nm} \pm 20\text{nm}$.

NEW

NANOMATERIALS - GOLD (Elemental Forms)

Gold AUROlite™ Heterogeneous Catalysts

10g

(store cold)

50g

Note: Sold in collaboration with Project AuTEK for research purposes. Reverse engineering and product modification prohibited. Only open before use, store cold in dark. See web for more details.

79-0160

Gold 1% on aluminum oxide extrudates (AUROlite™ Au/Al₂O₃) (7440-57-5)
dark purple extrudates ~1.2mm dia. x 5mm (avg)

Technical Note:

1. Useful product for the catalytic oxidation of a variety of substrates including carbon monoxide, aldehydes, alkenes, methane and ethanol. Average gold crystallite size is ~2-3nm.

Analysis: Au 1 wt% ± 0.1%; Al₂O₃ 98 wt%; Na⁺, Cl⁻ <1500ppm

Bulk density: 0.6–0.8 g/ml

References:

1. *J. Catal.*, 2007, 252, 119
2. *J. Catal.*, 2008, 260, 86
3. *Green Chem.*, 2008, 10, 168
4. *Gold Bulletin*, 2008, 41, 296
5. *Appl. Catal. B.*, 2013, 132, 195
6. *Chem. Rev.*, 2012, 112, 4469

NANOMATERIALS - GOLD (Elemental Forms)

Gold AUROLite™ Heterogeneous Catalysts

(store cold)

10g

50g

Note: Sold in collaboration with Project AuTEK for research purposes. Reverse engineering and product modification prohibited. Only open before use, store cold in dark. See web for more details.

79-0165 Gold 1% on titanium dioxide extrudates (AUROLite™ Au/TiO₂) (7440-57-5)
dark purple/gray extrudates 1.5mm dia. x 5mm (avg)

Technical Note:

1. Useful product for the catalytic oxidation of a variety of substrates including carbon monoxide, aldehydes, alkenes, methane and ethanol. Average gold crystallite size is ~2-3nm.

Analysis: Au 1 wt% ± 0.1%; TiO₂ 98 wt%; Na⁺, Cl⁻ <1500ppm

Bulk density: 0.85–0.95 g/ml

References:

1. *J.Catal.*, **2007**, 252, 119
2. *J.Catal.*, **2008**, 260, 86
3. *Green Chem.*, **2008**, 10, 168
4. *Gold Bulletin*, **2008**, 41, 296
5. *Appl. Catal. B.*, **2013**, 132, 195
6. *Chem. Rev.*, **2012**, 112, 4469

79-0170 Gold 1% on zinc oxide granulate (AUROLite™ Au/ZnO) (7440-57-5)
dark purple granulate 1-2mm dia.

Note: PCT WO2005115612.

Technical Note:

1. Useful product for the catalytic oxidation of a variety of substrates including carbon monoxide, aldehydes, alkenes, methane and ethanol. Average gold crystallite size is ~2-3nm.

Analysis: Au 1 wt% ± 0.1%; ZnO 88 wt% (contains Al₂O₃); Na⁺, Cl⁻ <1500ppm

Bulk density: 1-1.2 g/ml

References:

1. *J.Catal.*, **2007**, 252, 119
2. *J.Catal.*, **2008**, 260, 86
3. *Green Chem.*, **2008**, 10, 168
4. *Gold Bulletin*, **2008**, 41, 296
5. *Appl. Catal. B.*, **2013**, 132, 195
6. *Chem. Rev.*, **2012**, 112, 4469

Gold - Colloid

250mg

Note: Made to order. Long term shelf life not established.

1g

79-0080 Gold/tetra-n-octylammonium chloride colloid (7440-57-5)
Au/(C₈H₁₇)₄NCl; 2.6 nm ± 1.1 nm; brown-orange solid
(store cold)

Technical Note:

1. Soluble in toluene. Precursor for CO-oxidation catalysts.

Gold Nanochain

25ml

79-0134 Gold Nanochain [AuNP-Chain: 1-2 µm (Gum Arabic)] (7440-57-5)
maroon-red liq.
(store cold)

Properties: Water soluble, stable at pH 7.0; **Chain length:** 1-2 µm; **Shape:** Chain; **UV-Vis (nm):** 760 nm;

Stability: Stable for 90 days; **Size:** 7 ±3mm

Ordering Specifications: Minimum 2 weeks required to process the order.

Supplied in aqueous solutions. Contains gum arabic stabilizer. Suitable for spin coating, self-assembly and monolayer formation. Sensor design, nanoelectronics and MEMS applications.

NANOMATERIALS - GOLD (Elemental Forms)

Gold Nanoparticles - Solid and Functionalized

79-0235	Gold nanoparticles powder, 6nm, organic solvent-dispersible (7440-57-5) black pwdr. Note: 79-0235 is an organic soluble solid. The surface ligand is dodecanethiol. The hydrodynamic size of the nanoparticles is about 8-10nm larger than their inorganic core size measured by TEM.	5mg 25mg
---------	---	-------------

79-0238	Gold nanoparticles with amine surface functional group, 6nm, in water (7440-57-5) dark red liq. Note: 79-0238 is a group of water-soluble gold nanoparticles with amphiphilic polymer and PEG coating. The reactive group is an amine.	5mg 25mg
---------	--	-------------

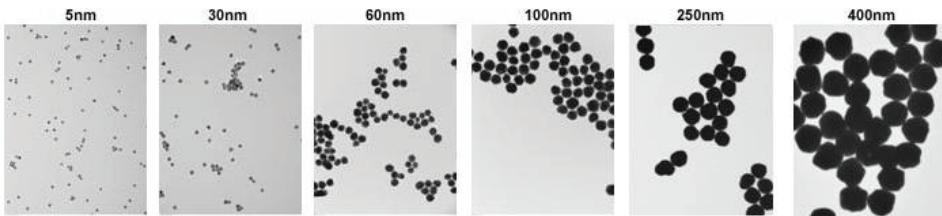
Technical Notes:

1. Zeta potential of 79-0238 is from -10mV to 0 mV.
2. Total thickness of organic layers is ~6 nm.
3. The organic layers consist of a monolayer of dodecanethiol, a monolayer of amphiphilic polymer and a monolayer of PEG.
4. The hydrodynamic size of the nanocrystals is about 12-14 nm larger than their inorganic core size as measured by TEM.
5. 79-0238 is very stable in buffer solutions in the pH range of 4-10 and can survive the autoclaving (121°C for 30 mins.).
6. The long term stability is not as good as that of 79-0240.
7. Check expiration date before conjugating.
8. 79-0238 can be conjugated to carbonyl or thiol-containing molecules.

79-0240	Gold nanoparticles with carboxylic acid surface functional group, 6nm, in water (7440-57-5) dark red liq. Note: 79-0240 is a group of water-soluble gold nanoparticles with amphiphilic polymer. The reactive group is a carboxylic acid.	10mg 50mg
---------	---	--------------

Technical Notes:

1. Zeta potential is from -30mV to -50 mV.
2. Total thickness of organic layers is ~4 nm.
3. The organic layers consist of a monolayer of dodecanethiol and a monolayer of amphiphilic polymer.
4. The hydrodynamic size of the nanoparticles is about 8-10 nm larger than their inorganic core size as measured by TEM.
5. 79-0240 is very stable in buffer solutions in the pH range of 4-10 and can survive the autoclaving (121°C for 30 min.)
6. 79-0240 can be conjugated to protein, peptide, and other amine-containing molecules.


NANOMATERIALS - GOLD (Elemental Forms)

Gold Nanoparticles - Reactant Free

>99% free of residual reactant in 0.1mM phosphate buffer.

Store away from direct sunlight at 4°C. Do not freeze. Shelf life 6 months.

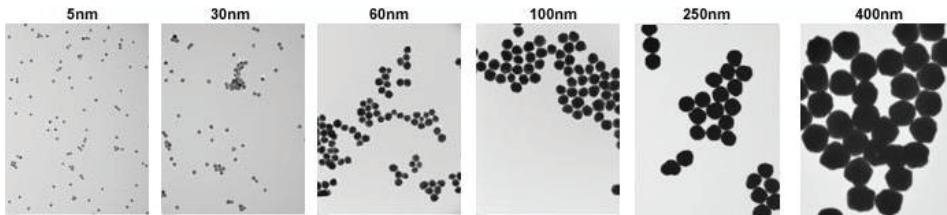
light sensitive; (store cold)

Gold Nanoparticles (1 OD, stabilized suspension in phosphate-buffered saline) reactant free
(7440-57-5)

25ml
100ml

Catalog #	Diameter	Color and form	Absorption max.
79-0180*	5nm	red liq.	515-520nm
79-0184*	10nm	red liq.	520nm
79-0186*	15nm	red liq.	520nm
79-0188*	20nm	red liq.	524nm
79-0190*	30nm	red liq.	526nm
79-0192*	40nm	red liq.	530nm
79-0194	50nm	red liq.	535nm
79-0196	60nm	pink to bright-red liq.	539nm
79-0198	80nm	pink to bright-red liq.	
79-0202	80nm	pink to bright-red liq.	
79-0204	90nm	pink to bright-red liq.	
79-0206	100nm	pink to bright-red liq.	
79-0208	150nm	pink to bright-red liq.	
79-0220	200nm	pink to bright-red liq.	
79-0222	250nm	pink to bright-red liq.	
79-0224	300nm	pink to bright-red liq.	
79-0228	400nm	pink to bright-red liq.	

*Gold Nanoparticles Kit, Reactant Free component. See page 60


96-1545 **Gold Nanoparticles Kit, Reactant-Free (5nm-40nm diameter, OD 1, suspension in phosphate-buffered saline, 515-530nm abs. max.) (7440-57-5)**
See page 60

NANOMATERIALS - GOLD (Elemental Forms)

Gold Nanoparticles - Stabilizing Surfactant (1 OD, supplied in 0.1mM stabilizing surfactant)

Store away from direct sunlight at 4°C. Do not freeze. Shelf life 6 months.

light sensitive, (store cold)

Gold Nanoparticles (1 OD, supplied in 0.1mM stabilizing surfactant) (7440-57-5)

25ml
100ml

Catalog #	Diameter	Color and form	Absorption max.
79-0182*	5nm	red liq.	515-520nm
79-0210*	10nm	red liq.	515-520nm
79-0212*	15nm	red liq.	520nm
79-0214*	20nm	red liq.	524nm
79-0216*	30nm	red liq.	526nm
79-0218*	40nm	red liq.	530nm
79-0260	50nm	pink to bright-red liq.	535nm
79-0262	60nm	pink to bright-red liq.	540nm
79-0264	70nm	pink to bright-red liq.	548nm
79-0266	80nm	pink to bright-red liq.	553nm
79-0268	90nm	pink to bright-red liq.	564nm
79-0270	100nm	pink to bright-red liq.	572nm
79-0272	150nm	pink to bright-red liq.	
79-0274	200nm	pink to bright-red liq.	
79-0276	250nm	pink to bright-red liq.	
79-0278	300nm	pink to bright-red liq.	
79-0280	400nm	pink to bright-red liq.	

*Gold Nanoparticles Kit, stabilized suspension citrate buffer component. See page 59

96-1547 Gold Nanoparticles Kit (5nm-40nm diameter, OD 1, stabilized suspension citrate buffer) (7440-57-5)
See page 59

NANOMATERIALS - GOLD (Elemental Forms)

Gold Nanoparticles - Spherical

Concentration: 0.03mg/ml ($\pm 10\%$)

5ml

25ml

Storage Conditions: (store cold), store at $\sim 4^\circ\text{C}$ (do not freeze)

Shelf Life: 6 months

79-6040	Spherical Gold Nanoparticles (30 nm) (7440-57-5) orange pink liq. Note: Spherical Gold Nanoparticles Kit component.
79-6045	Spherical Gold Nanoparticles (50 nm) (7440-57-5) pink liq. Note: Spherical Gold Nanoparticles Kit component.
79-6050	Spherical Gold Nanoparticles (70 nm) (7440-57-5) pink liq. Note: Spherical Gold Nanoparticles Kit component.
79-6055	Spherical Gold Nanoparticles (90 nm) (7440-57-5) violet liq. Note: Spherical Gold Nanoparticles Kit component.
96-1540	Gold Nanospheres Kit (30-90 nm) (7440-57-5) See page 61

Gold Nanoparticles - Sugar Coated

(store cold)

5ml

79-0124	Sugar Coated Gold Nanoparticles [AuNP: 1-2 nm (Lactose)] (7440-57-5) maroon-red liq.
---------	---

Properties: Water soluble; **Size:** 22-38, 4-16, 6-10 or 1-2 nm; **Shape:** Sphere; **UV-Vis (nm):** 535, 535, 540 or 540 nm;

Stability: After generation from kit components - Stable for 1 day.

Supplied as kit. Suitable for in vitro use and sensor design applications.

79-0122	Sugar Coated Gold Nanoparticles [AuNP: 6-10 nm (Maltose)] (7440-57-5) maroon-red liq.
---------	--

Properties: Water soluble; **Size:** 22-38, 4-16, 6-10 or 1-2 nm; **Shape:** Sphere; **UV-Vis (nm):** 535, 535, 540 or 540 nm;

Stability: After generation from kit components - Stable for 1 day.

Supplied as kit. Suitable for in vitro use and sensor design applications.

79-0412	Gold nanoparticles, pure, (<20nm) in acetone at 100mg/L (surfactant and reactant-free)
HAZ	(7440-57-5) red liq.

79-0416	Gold nanoparticles, pure, (<20nm) in isopropanol at 100mg/L (surfactant and reactant-free)
HAZ	(7440-57-5) red liq.

79-0410	Gold nanoparticles, pure, (<20nm) in water at 100mg/L (surfactant and reactant-free, OD>1, stabilized with < 0.01 mmol/l of citrate) (7440-57-5) red. liq.
79-0418	Gold nanoparticles, pure, (<20nm) in water at 500mg/L (surfactant and reactant-free, OD>5, stabilized with < 0.01 mmol/l of citrate) (7440-57-5) dark red liq.

NANOMATERIALS - GOLD (Elemental Forms)

Gold Nanoparticles - Surfactant and Reactant-Free (Supported), Manufactured via Laser Ablation

(7440-57-5), (store cold)

Note: Manufactured by laser ablation. Sold in collaboration with Particular® for research purposes only.

79-0921	Gold nanoparticles, 1% on carbon black (surfactant and reactant-free) (7440-57-5) Au; FW: 196.70; black solid	5g 25g
79-0916	Gold nanoparticles, 1% on Titania (anatase) (surfactant and reactant-free) (7440-57-5) Au; FW: 196.70; dark purple pwdr.	5g 25g
79-0905	Gold nanoparticles, 1% on Titania (anatase/rutile) (surfactant and reactant-free) (7440-57-5) Au; FW: 196.70; purple solid	5g 25g
79-0926	Gold nanoparticles, 5% on carbon black (surfactant and reactant-free) (7440-57-5) Au; FW: 196.70; black solid	5g 25g
79-0935	Gold nanoparticles, 10% on Titania (anatase) (surfactant and reactant-free) (7440-57-5) Au; FW: 196.70; purple solid	1g 5g
79-0930	Gold nanoparticles, 10% on Titania (anatase/rutile) (surfactant and reactant-free) (7440-57-5) Au; FW: 196.70; dark purple solid	1g 5g

Gold Nanoparticles - Water Soluble

(store cold)

25ml

100ml

79-0110	Water Soluble Gold Nanoparticles [AuNP: 3nm (Citrate)] (7440-57-5) wine-red liq.
---------	---

Properties: Water soluble; **Size:** 3 nm, 5 nm, 10 or 15 nm; **Shape:** Sphere; **UV-Vis (nm):** 520, 525, 520 or 525 nm; **Stability:** Stable for 90 days in aqueous media.

Supplied in aqueous solutions. Contains citrate stabilizer. Suitable for spin coating, self-assembly and monolayer formation.

79-0112	Water Soluble Gold Nanoparticles [AuNP: 5nm (Citrate)] (7440-57-5) wine-red liq.
---------	---

Properties: Water soluble; **Size:** 3 nm, 5 nm, 10 or 15 nm; **Shape:** Sphere; **UV-Vis (nm):** 520, 525, 520 or 525 nm; **Stability:** Stable for 90 days in aqueous media.

Supplied in aqueous solutions. Contains citrate stabilizer. Suitable for spin coating, self-assembly and monolayer formation.

79-0114	Water Soluble Gold Nanoparticles [AuNP: 10 nm (Citrate)] (7440-57-5) wine-red liq.
---------	---

Technical Note:

1. See 79-0110 (page 40)

79-0116	Water soluble Gold Nanoparticles [AuNP: 15 nm (Citrate)] (7440-57-5) wine-red liq.
---------	---

Technical Note:

1. See 79-0110 (page 40)

79-0126	Water Soluble Gold Nanoparticles [AuNP: 11-20 nm (Gelatin)] (7440-57-5) wine-red liq.
---------	--

Properties: Water soluble; **Size:** 11-20 nm; **Shape:** Sphere; **UV-Vis (nm):** 540 nm; **Stability:** Stable for 90 days in aqueous media. Suitable for spin coating, self-assembly and monolayer formation. Suitable for in vitro use and sensor design applications.

79-0108	Water Soluble Gold Nanoparticles [AuNP: 12-16 nm (Starch)] (7440-57-5) maroon-red liq.
---------	---

Properties: Water soluble, stable at pH 7.0; **Size:** 30-40 nm; **Shape:** Sphere; **UV-Vis (nm):** 535 nm;

Stability: Stable for 30 days in aqueous media.

Supplied in aqueous solutions. Contains starch stabilizer. Suitable for spin coating, self-assembly and monolayer formation.

References:

1. *Appl. Phys. Lett.*, **2006**, 88, 153114
2. *J. Am. Chem. Soc.*, **2006**, 128, 11342

NANOMATERIALS - GOLD (Elemental Forms)

Gold Nanorods

5ml

79-0136 Gold Nanorods [AuNP-Rod: Aspect Ratio: 3-3.5 (CTAB)] (7440-57-5)
maroon-red liq.
(store cold)

Properties: Water soluble; **Aspect Ratio:** 3-3.5; **Shape:** Rod; **UV-Vis (nm):** 680 nm; **Stability:** Stable for 14 days Supplied in aqueous solutions. Contains CTAB stabilizer. Ready for biomolecule conjugation. Suitable for in vitro use and sensor design applications.

Gold Nanorods (Axial Diameter - 25nm) (7440-57-5)

5ml

Storage Conditions: (store cold) Store at 4°C. Do not freeze. Shelf Life: 6 months

25ml

Technical Note:

Catalog #	79-6000	79-6005	79-6010	79-6015
Concentration	171 ug/ml (±10%)	235 ug/ml (±10%)	150 ug/ml (±10%)	91 ug/ml (±10%)
Axial diameter (nm)	25 (±10%)	25 (±10%)	25 (±10%)	25 (±10%)
Longitudinal Size (nm)	34 (±10%)	47 (±10%)	60 (±10%)	73 (±10%)
Peak Longitudinal Surface Plasmon Resonance Wavelength (nm)	550	600	650	700
Peak Axial Surface Plasmon Resonance Wavelength (nm)	530	530	530	530
Color and Form	red liq.	blue liq.	blue liq.	gray liq.

*Gold Nanorods Kit (Axial Diameter - 25nm) component. See page 60

79-6000 Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 550 nm) (7440-57-5)
79-6005 Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 600 nm) (7440-57-5)
79-6010 Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 650 nm) (7440-57-5)
79-6015 Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 700 nm) (7440-57-5)
96-1530 Gold Nanorods Kit (Axial Diameter - 25 nm, wavelength 550-700 nm) (7440-57-5)
See page 60

Gold Nanorods (Axial Diameter - 10nm) (7440-57-5)

5ml

Storage Conditions: (store cold) Store at 4°C. Do not freeze. Shelf Life: 6 months

25ml

Technical Note:

Catalog #	79-6020	79-6025	79-6030	79-6035
Concentration	30 ug/ml (±10%)	34 ug/ml (±10%)	35 ug/ml (±10%)	36 ug/ml (±10%)
Axial diameter (nm)	10 (±10%)	10 (±10%)	10 (±10%)	10 (±10%)
Longitudinal Size (nm)	29 (±10%)	35 (±10%)	38 (±10%)	41 (±10%)
Peak Longitudinal Surface Plasmon Resonance Wavelength (nm)	700	750	780	808
Peak Axial Surface Plasmon Resonance Wavelength (nm)	512	512	512	512
Color and Form	pale red-brown liq.	pale red liq.	pale red solution	pale red liq.

*Gold Nanorods Kit (Axial Diameter - 10nm) component. See page 60

79-6020 Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 700 nm) (7440-57-5)
79-6025 Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 750 nm) (7440-57-5)
79-6030 Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 780 nm) (7440-57-5)
79-6035 Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 808 nm) (7440-57-5)
96-1535 Gold Nanorods Kit (Axial Diameter - 10 nm, wavelength 550-700 nm) (7440-57-5)
See page 60

NANOMATERIALS - GOLD (Elemental Forms)

Gold Nanorods, CTAB Free

light sensitive, (store cold)

5ml
25ml

Note: Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in Collaboration with SONA Nanotech for research purposes only. Gold Gemini Nanorods Kit component.

79-7010 Gold Gemini Nanorods, CTAB Free (Wavelength 650 nm) (7440-57-5)

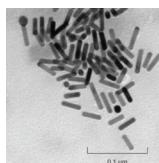
Au; violet liq.

NEW

Technical Note:

Item #	LPSR Maximum (nm)	Length (nm)	Width (nm)	Aspect Ratio	Color & Form
79-7010	640 - 670	25 - 31	13 - 18	1.7 - 1.9	violet liq.
79-7015	685 - 715	37 - 43	13 - 18	2.4 - 2.8	blue liq.
79-7020	735 - 765	37 - 44	10 - 13	3.4 - 3.7	red-purple liq.
79-7025	785 - 815	40 - 50	10 - 13	3.8 - 4.1	red-orange liq.
79-7030	835 - 865	48 - 55	9 - 12	4.6 - 5.3	maroon-purple liq.

Concentration: >30 µg/ml


pH: 5.5 - 7.5

Stabilizer: Amphiphilic Agents

Solvent: Stabilized with amphiphilic agents in conductivity grade water (18.0 MΩ cm⁻¹)

Optical Density: 1.0 - 1.2

Shelf Life: 12 months

79-7015 Gold Gemini Nanorods, CTAB Free (Wavelength 700 nm) (7440-57-5)

Au; blue liq.

NEW

Technical Note:

1. See 79-7010 (page 42)

79-7020 Gold Gemini Nanorods, CTAB Free (Wavelength 750 nm) (7440-57-5)

Au; red-purple liq.

NEW

Technical Note:

1. See 79-7010 (page 42)

79-7025 Gold Gemini Nanorods, CTAB Free (Wavelength 800 nm) (7440-57-5)

Au; red-orange liq.

NEW

Technical Note:

1. See 79-7010 (page 42)

79-7030 Gold Gemini Nanorods, CTAB Free (Wavelength 850 nm) (7440-57-5)

Au; maroon-purple liq.

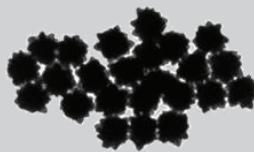
NEW

Technical Note:

1. See 79-7010 (page 42)

96-1549 Gold Gemini Nanorods Kit, CTAB Free (Wavelength 650-850 nm)

See page 59


NANOMATERIALS - GOLD (Elemental Forms)

Gold NanoUrchins (1 OD, 0.1 mM in phosphate-buffered saline) >95.0% reactant free
blue liq.

light sensitive, (store cold)

Note: Store away from direct sunlight at 4°C. Do not freeze.

Shelf life 6 months.

20ml
100ml

Technical Note:

Product #	Diameter	Color and form	Absorption max
79-0310	50nm	blue liq.	585nm
79-0313	60nm	blue liq.	585nm
79-0315	70nm	blue liq.	600nm
79-0318	80nm	blue liq.	620nm
79-0320	90nm	blue liq.	630nm
79-0323	100nm	blue liq.	680nm

NANOMATERIALS - GOLD (Compounds)

79-2035 Hexachlorododecakis[diphenyl(m-sulfotophenyl)phosphine]pentapentacon-tagold, dodecasodium salt (water soluble) Schmid Au₆₅ Cluster (115804-59-6)
Na₁₂{Au₆₅[P(C₆H₅)₂(C₆H₄SO₃)]₁₂Cl₆}; FW: 15417.85; black solid

10mg

NANOMATERIALS - IRIDIUM (Compounds)

Antimony Tin Oxide/Iridium Het-WOC core/shell nanopowder (conductive and acid-stable)

50g
250g

HAZ: blue pwdr.; ATO Composition: 90% SnO₂, 10% Sb₂O₃ (w/w)

Note: Sold under license from Catalytic Innovations, LLC for research purposes only.

US Patent Publication No. US20150021194 A1.

Technical Note:

Product #	Particle Size	BET Surface Area	Resistivity
77-0030	20nm	50 - 60m ² /g	0.3 - 0.7 Ω·cm
77-0035	50nm	40 - 50m ² /g	0.05 - 0.08 Ω·cm
77-0040	100nm	5 - 10m ² /g	0.05 - 0.08 Ω·cm

NANOMATERIALS - IRON (Compounds)

Iron Magnetic Fluids

2ml
10ml

26-0032 Iron(II,III) oxide (Magnetite) aqueous magnetic fluid [3.5 vol%, Ms = 15-16 kA/m]
(1317-61-9)
Fe₃O₄; black solid (water suspension)

26-0036 Iron(II,III) oxide (Magnetite) aqueous magnetic fluid [7.0 vol%, Ms = 30-31 kA/m]
(1317-61-9)
Fe₃O₄; black solid (water suspension)

26-0022 Iron(II,III) oxide (Magnetite) magnetic fluid in kerosene with oleic acid
HAZ [7-9 vol%, Ms = 35-45 kA/m] (1317-61-9)
black, viscous liq.

26-0024 Iron(II,III) oxide (Magnetite) magnetic fluid in kerosene with oleic acid
HAZ [15-18 vol%, Ms = 50-70 kA/m] (1317-61-9)
black, viscous liq.

NANOMATERIALS - IRON (Compounds)

Iron Nanoparticles

Note: Store at 5 to 25°C. Do not freeze. Suggested use within 12 months of receipt. Sold in collaboration with Cerion for research purposes only.

25g
100g
500g

26-2758 Iron(III) oxyhydroxide in water at pH = 3.0 +- 0.5 (FEO-W320) (20344-49-4)
HAZ FeO(OH); FW: 88.85; d. 1.19
(store cold)

% Solids: 20.0 +/- 0.5 as Fe₂O₃

pH: 3.0 +/- 0.5

Mean Number Weighted Particle Diameter: <5.0 nm (by Dynamic Light Scattering)

Polydispersity Index: <0.25

Chemical Composition (particles): >99.5% FeOOH

Iron Nanoparticles - Solid form (with amine surface functional group)

5mg
25mg

Note: A water-soluble iron oxide nanoparticles with amphiphilic polymer and PEG coating. The reactive group is an amine.

26-2711 Iron oxide nanoparticles in water, 10nm, with amine surface functional group (1317-61-9)
Fe₃O₄; FW: 231.53; brown liq.

Technical Notes:

1. Zeta potential is -10mV to +10mV.
2. The organic layers consist of a monolayer of oleic acid and a monolayer of amphiphilic polymer.
3. The overall thickness of the organic layers about 6 nm.
4. The hydrodynamic size of the nanoparticles is about 12-14 nm larger than their inorganic core size measured by TEM.
5. Very stable in most buffer solutions in the pH range of 4-10. Solution can survive autoclaving process (121°C for 30 minutes).
6. Light precipitation may occur during storage. Check expiration date before conjugation.
7. The amine density is low due to the long PEG chain.
8. Can be conjugated to carbonyl or thio-containing molecules.

References:

1. *Clinical Cancer Research*, 2009, 15, 4722
2. *Gastroenterology*, 2009, 136, 1514
3. *Small*, 2009, 5, 235
4. *The Analysis*, 2008, 133, 154
5. *The Journal of Physical Chemistry C*, 2008, 112, 8127
6. *International Journal of Nanomedicine*, 2008, 3, 311
7. *Journal of Biomedical Nanotechnology*, 2008, 4, 439

26-2713 Iron oxide nanoparticles in water, 20nm, with amine surface functional group (1317-61-9)
Fe₃O₄; FW: 231.53; black liq.

Technical Note:

1. See 26-2711 (page 44)

26-2715 Iron oxide nanoparticles in water, 30nm, with amine surface functional group (1317-61-9)
Fe₃O₄; FW: 231.53; black liq.

Technical Note:

1. See 26-2711 (page 44)

NANOMATERIALS - IRON (Compounds)

Iron Nanoparticles - Solid form (with carboxylic acid surface functional group)

Note: A water-soluble iron oxide nanoparticles with amphiphilic polymer coating. The reactive group is a carboxylic acid.

10mg

50mg

26-2705 Iron oxide nanoparticles in water, 10nm, with carboxylic acid surface functional group
(1317-61-9)
Fe₃O₄; FW: 231.53; brown liq.
(store cold)

Technical Notes:

1. Zeta potential of 26-2705 -30mv to -50mV.
2. The organic layers consist of a monolayer of oleic acid and a monolayer of amphiphilic polymer.
3. The overall thickness of the organic layers about 4 nm.
4. The hydrodynamic size of the nanoparticles is about 8-10 nm, larger than their inorganic core size measured by TEM.
5. Very stable in most buffer solutions in the pH range of 4-10. Solution can survive autoclaving process (121°C for 30 minutes).

References:

1. *Clinical Cancer Research*, 2009, 15, 4722
2. *Gastroenterology*, 2009, 136, 1514
3. *Small*, 2009, 5, 235
4. *The Analysis*, 2008, 133, 154
5. *The Journal of Physical Chemistry C*, 2008, 112, 8127
6. *International Journal of Nanomedicine*, 2008, 3, 311
7. *Journal of Biomedical Nanotechnology*, 2008, 4, 439

26-2707 Iron oxide nanoparticles in water, 20nm, with carboxylic acid surface functional group
(1317-61-9)
Fe₃O₄; FW: 231.53; black liq.

Technical Note:

1. See 26-2705 (page 45)

26-2709 Iron oxide nanoparticles in water, 30nm, with carboxylic acid surface functional group
(1317-61-9)
Fe₃O₄; FW: 231.53; black liq.

Technical Note:

1. See 26-2705 (page 45)

Iron Nanoparticles - Solid form (organic solvent-dispersible)

Note: A water-soluble iron oxide nanoparticles with amphiphilic polymer and PEG coating. No linkable reactive group on the surface.

50mg

500mg

26-2728 Iron oxide nanoparticles, 10nm, organic solvent-dispersible (in chloroform)
(1317-61-9)
Fe₃O₄; FW: 231.53; black liq.

Technical Notes:

1. Zeta potential is -10mv to 0.
2. Total thickness of organic layers is ~6 nm.
3. The hydrodynamic size of the nanoparticles is about 12-14 nm larger than their inorganic core size as measured by TEM.
4. The colloidal stability is exceptionally high.
5. Stable in most buffer solutions in the pH range of 4-10. Solution can survive autoclaving process (121°C for 30 minutes).

References:

1. *Clinical Cancer Research*, 2009, 15, 4722
2. *Gastroenterology*, 2009, 136, 1514
3. *Small*, 2009, 5, 235
4. *The Analysis*, 2008, 133, 154
5. *The Journal of Physical Chemistry C*, 2008, 112, 8127
6. *International Journal of Nanomedicine*, 2008, 3, 311
7. *Journal of Biomedical Nanotechnology*, 2008, 4, 439

26-2730 Iron oxide nanoparticles, 20nm, organic solvent-dispersible (in chloroform)
(1317-61-9)
Fe₃O₄; FW: 231.53; black liq.

Technical Note:

1. See 26-2728 (page 45)

26-2732 Iron oxide nanoparticles, 30nm, organic solvent-dispersible (in chloroform)
(1317-61-9)
Fe₃O₄; FW: 231.53; black liq.

Technical Note:

1. See 26-2728 (page 45)

NANOMATERIALS - IRON (Compounds)

Iron Nanoparticles - Solid Form (in water with PEG)

Note: A water-soluble iron oxide nanoparticles with amphiphilic polymer and PEG coating. No linkable reactive group on the surface.

5mg

25mg

26-2722 Iron oxide nanoparticles in water, 10nm, with PEG (1317-61-9)

Fe₃O₄; FW: 231.53; brown liq.

Technical Notes:

1. Zeta potential is -10mv to 0.
2. Total thickness of organic layers is ~6 nm.
3. The hydrodynamic size of the nanoparticles is about 12-14nm larger than their inorganic core size as measured by TEM.
4. The colloidal stability is exceptionally high.
5. Stable in most buffer solutions in the pH range of 4-10. Solution can survive autoclaving process (121°C for 30 minutes).

References:

1. *Clinical Cancer Research*, 2009, 15, 4722
2. *Gastroenterology*, 2009, 136, 1514
3. *Small*, 2009, 5, 235
4. *The Analysis*, 2008, 133, 154
5. *The Journal of Physical Chemistry C*, 2008, 112, 8127
6. *International Journal of Nanomedicine*, 2008, 3, 311
7. *Journal of Biomedical Nanotechnology*, 2008, 4, 439

26-2724 Iron oxide nanoparticles in water, 20nm, with PEG (1317-61-9)

Fe₃O₄; FW: 231.53; brown liq.

Technical Note:

1. See 26-2722 (page 46)

26-2726 Iron oxide nanoparticles in water, 30nm, with PEG (1317-61-9)

Fe₃O₄; FW: 231.53; black liq.

Technical Note:

1. See 26-2722 (page 46)

NANOMATERIALS - LEAD (Compounds)

Lead Sulfide Quantum Dots

Note: Sold in collaboration with CAN for R&D purposes. Suggest use within 6 months of purchase.

Do not freeze. Store in DARK.

82-1081	Lead sulfide CANdot® quantum dot (PbS core - ~3nm), 10 mg/mL in toluene,	2ml
HAZ	1000nm peak emission (1314-87-0)	10ml
	PbS; FW: 239.25; dark-red liq.	
82-1083	Lead sulfide CANdot® quantum dot (PbS core - ~4.5nm), 10 mg/mL in toluene,	1ml
HAZ	1200nm peak emission (1314-87-0)	5ml
	PbS; FW: 239.25; dark-red liq.	
82-1085	Lead sulfide CANdot® quantum dot (PbS core - ~6nm), 10 mg/mL in toluene,	1ml
HAZ	1400nm peak emission (1314-87-0)	5ml
	PbS; FW: 239.25; dark-red liq.	
82-1090	Lead sulfide CANdot® quantum dot (PbS core - ~8nm), 10 mg/mL in toluene,	1ml
HAZ	1600nm peak emission (1314-87-0)	5ml
	PbS; FW: 239.25; dark-red liq.	

NANOMATERIALS - MAGNESIUM (Compounds)

12-1405 Magnesium oxide nanopowder (1309-48-4)

MgO; FW: 40.31; white pwdr.

Note: APS 20nm; SSA 50m²/g

25g

100g

NANOMATERIALS - NICKEL (Elemental Forms)

28-0008	Nickel/tetra-n-octylammonium bromide colloid, purified (65-70% Ni) (7440-02-0) HAZ 	100mg 500mg
pyrophoric Note: Made to order. Suggest use within 3 months of receipt. Long term shelf life not established.		

Technical Note:

1. Soluble in THF, toluene, acetone and methylene chloride. Insoluble in ethanol, ether and pentane.

References:

1. *J. Mol. Catal.*, 1994, 86, 129
2. *Eur. J. Inorg. Chem.*, 2001, 2455
3. *Catalysis and Electrocatalysis at Nanoparticles Surfaces, Chapter 10*, p, 343, 377. Marcel Dekker, NY, 2003.
4. *Advanced Catalysts and Nanostructured Materials, Chapter 7*, Academic, Press, San Diego, 1996, 165-196.

NANOMATERIALS - PALLADIUM (Elemental Forms)

Palladium Heterogeneous Catalyst

5g
25g

46-1710	Palladium, 0.6% on activated carbon, 50% water-wet paste (NanoSelect LF 100) (7440-05-3) black solid (d50=25 µm)
---------	--

Note: Sold in collaboration with BASF for research purposes only. BASF Heterogeneous Catalyst Kit (96-6717) component. BASF Palladium Catalyst Kit (96-6719) component.

Technical Note:

1. NanoSelect LF 100 is a lead-free, water-wet, catalyst containing metal crystallites sizes of around 7 nm, and a mean particle size of 25 microns. The metal crystallites are supported on a carbon powder. The presence of nanometer-sized metal particles greatly increases the metal surface area available per gram of catalyst, and boosts catalytic activity. The catalyst is recommended for use in hydrogenation reactions leading to the partial reduction of functional groups. It is specifically suited for the selective hydrogenation of alkynes to alkenes, with a high selectivity for cis-alkenes.

Palladium Nanoparticles (store cold)

25ml
100ml

46-0407	Palladium Nanoparticles [PdNP: 2-4 nm (gum Arabic)] (7440-05-3) yellowish-brown liq.
---------	---

Properties: Water soluble; **Size:** 2-4 nm; **Shape:** Sphere; **Specification:** Stable for 60 days.

Supplied in aqueous media, contains gum arabic stabilizer. Suitable for in vitro use and sensor design applications. Suitable for spin coating, self-assembly and monolayer formation. Potential new Catalysts.

46-0409	Palladium Nanoparticles [PdNP: 2-3 nm (Gelatin)] (7440-05-3) yellowish-brown liq.
---------	--

Properties: Water soluble; **Size:** 2-3 nm; **Shape:** Sphere; **Specification:** Stable for 60 days.

Supplied in aqueous media, contains gelatin stabilizer. Suitable for in vitro use and sensor design applications. Suitable for spin coating, self-assembly and monolayer formation. Potential new Catalysts.

Palladium Nanoparticles - Surfactant and Reactant-Free (Pure), Manufactured via Laser Ablation

25ml
100ml

Note: Made to order. Manufactured by laser ablation. Store at room temperature (up to 25°C). Do not freeze. Shelf life 12 months. Sold in collaboration with Particular® for research purposes only.

46-4012	Palladium nanoparticles, pure, (<20nm) in acetone at 100mg/L HAZ (surfactant and reactant-free) (7440-05-3) grey-brown liq.
---------	--

46-4010	Palladium nanoparticles, pure, (<20nm) in water at 100mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-05-3) grey-brown liq.
---------	---

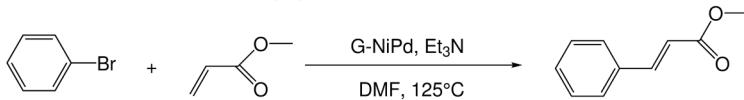
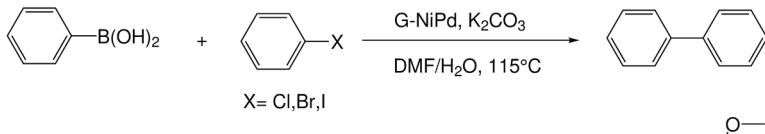
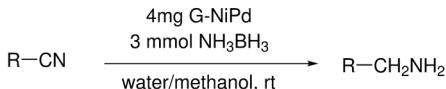
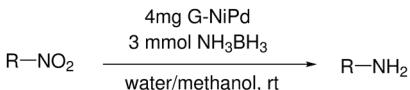
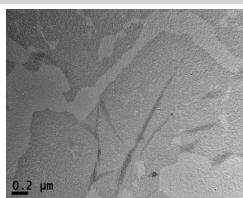
46-4018	Palladium nanoparticles, pure, (<20nm) in water at 500mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-05-3) black liq.
---------	--

46-4022	Palladium nanoparticles, pure, (50-70nm) in acetone at 100mg/L HAZ (surfactant and reactant-free) (7440-05-3) grey liq.
---------	--

Note: Particle size of 50-70 nm is measured via DLS, colloid may also contain significant fractions of smaller particles. ***Limited quantities available***

NANOMATERIALS - PALLADIUM (Compounds)

Nickel/palladium Alloy Nanoparticle on Graphene






25mg
100mg

28-0015 Nickel/palladium alloy nanoparticle on graphene
(G-Ni₃₃Pd₆₇)
black pwdr.

Note: U.S. Patent Application 14/667,859.

Technical Note:

1. NiPd NPs are useful catalysts for the tandem dehydrogenation of ammoniaborane and hydrogenation of R-NO₂ or R-CN to R-NH₂. NiPd nanoparticles also catalyze Suzuki-Miyaura and Heck cross-coupling reactions. The product is synthesized via the borane reduction of nickel and palladium salts in oleylamine, followed by dispersing the resulting mixture of Ni/Pd nanoparticles on graphene. The catalyst is 100% recyclable and shows no drop in catalytic activity after one month, when stored in air or argon at ambient temperatures.

References:

1. *Nano Research*, 2013, 6, 10.
2. *ACS Catal.*, 2014, 4, 1777.

NANOMATERIALS - PLATINUM (Compounds)

Platinum Colloids

Note: Made to order. Suggest use within 3 months of receipt. Long term shelf life not established.

250mg
1g

78-0055	Platinum/tetra-n-octylammonium chloride colloid, purified (70-85% Pt)
HAZ	(7440-06-4)
	Pt/(C ₈ H ₁₇) ₄ NCl; 2.8 nm ± 0.5 nm; grayish-black pwdr pyrophoric

Technical Note:

1. Soluble in THF. Insoluble in toluene, acetone, ether and ethanol.

References:

1. *J. Mol. Catal.*, 1994, 86, 129
2. *Eur. J. Inorg. Chem.*, 2001, 2455.
3. *Synthetic Methods of Organometallic and Inorganic Chemistry*, Vol.10, Chapter 20, p. 209-223, Theime Verlag, NY, 2002.
4. *Catalysis and Electrocatalysis at Nanoparticles Surfaces*, Chapter 10, p. 343, 377, Marcel Dekker, NY, 2003.

78-0062	Platinum-ruthenium/tetra-n-octylammonium chloride colloid
HAZ	(~7 wt% Pt, ~3.5 wt% Ru) (7440-06-4) Pt ₅₀ Ru ₅₀ /(C ₈ H ₁₇) ₄ NCl; 1.7 nm ± 0.5 nm; waxy, black residue

Technical Note:

1. Very soluble in THF. Soluble in toluene. Precursor for fuel cell catalysts.

References:

1. *J. Mol. Catal.*, 1994, 86, 129
2. *Synthetic Methods of Organometallic and Inorganic Chemistry*, Vol. 10, Chapter 20, p. 209-223, Theime Verlag, NY, 2002.
3. *Catalysis and Electrocatalysis at Nanoparticles Surfaces*, Chapter 10, p. 343-377, Marcel Dekker, NY, 2003.

Platinum Fuel Cell Catalysts

100mg

78-1685	Dealloyed Pt-Co core-shell fuel cell catalyst on carbon
HAZ	PtCo; black solid

Technical Note:

1. For detailed note visit www.strem.com.

78-1688	Dealloyed Pt-Cu core-shell fuel cell catalyst on carbon
HAZ	PtCu; black solid

Technical Note:

1. For detailed note visit www.strem.com.

Platinum Nanoparticles

78-0007	Platinum, 97% (2-5 nanometers) (7440-06-4)	250mg
HAZ	Pt; black pwdr.	1g

Note: Made to order. Suggest use within 3 months of receipt. Long term shelf life not established.

References:

1. *J. Mol. Catal.*, 1994, 86, 129

78-0405	Platinum Nanoparticles [PtNP: 2-3 nm (gum Arabic)] (7440-06-4)
	yellowish-brown liq. (store cold)

25ml
100ml

Properties: Water soluble; **Size:** 2-3 nm; **Shape:** Sphere; **UV Vis (nm):** 405-410 nm; **Specification:** Stable for 60 days Supplied in aqueous media, contains gum arabic stabilizer. Suitable for in vitro use and sensor design applications. Suitable for spin coating, self-assembly and monolayer formation. Potential new Catalysts.

NANOMATERIALS - PLATINUM (Compounds)

Platinum Nanoparticles - Surfactant and Reactant-Free (Pure), Manufactured via Laser Ablation

Note: Made to order. Manufactured by laser ablation. Store at room temperature (up to 25°C). Do not freeze. Shelf life 12 months. Sold in collaboration with Particular® for research purposes only.

78-1405	Platinum nanoparticles, pure, (<20nm) in water at 30mg/L (surfactant and reactant-free, stabilized with <0.01 mmol/l of citrate) (7440-06-4) grey-brown liq.	100ml
78-1402	Platinum nanoparticles, pure, (<20nm) in water at 100mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-06-4) grey-brown liq.	25ml 100ml
78-1404 HAZ	Platinum nanoparticles, pure, (<20nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-06-4) grey-brown liq.	25ml 100ml
78-1408 HAZ	Platinum nanoparticles, pure, (<20nm) in isopropanol at 100mg/L (surfactant and reactant-free) (7440-06-4) grey-brown liq.	25ml 100ml
78-1410	Platinum nanoparticles, pure, (<20nm) in water at 500mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-06-4) black liq.	25ml 100ml
78-1414 HAZ	Platinum nanoparticles, pure, (50-70nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-06-4) grey liq. Note: Particle size of 50-70 nm is measured via DLS, colloid may also contain significant fractions of smaller particles. ***Limited quantities available***	25ml 100ml

Platinum Nanoparticles - Surfactant and Reactant-Free (Supported), Manufactured via Laser Ablation

(store cold) Note: Manufactured by laser ablation. Sold in collaboration with Particular® for research purposes only.

78-3015	Platinum nanoparticles, 1% on carbon black (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; black solid	5g 25g
78-3020	Platinum nanoparticles, 5% on carbon black (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; black solid	5g 25g
78-3030	Platinum nanoparticles, 10% on carbon black (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; black solid	1g 5g
78-3032	Platinum nanoparticles, 20% on carbon black (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; black solid	1g 5g
78-3035	Platinum nanoparticles, 30% on carbon black (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; black solid	1g 5g
78-3012	Platinum nanoparticles, 1% on Titania (anatase) (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; gray solid	5g 25g
78-3005	Platinum nanoparticles, 1% on Titania (anatase/rutile) (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; light gray solid	5g 25g
78-3026	Platinum nanoparticles, 10% on Titania (anatase) (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; dark gray solid	1g 5g
78-3023	Platinum nanoparticles, 10% on Titania (anatase/rutile) (surfactant and reactant-free) (7440-06-4) Pt; FW: 195.10; dark gray solid	1g 5g

NANOMATERIALS - RHODIUM (Compounds)

Rhodium Colloids

Note: Made to order. Suggest use within 3 months of receipt. Long term shelf life not established.

45-1550	Rhodium colloid (polyethyleneglycol-dodecylether hydrosol) (~9 wt% Rh) (7440-16-6) Rh/alkoxyethers; ~2 nm; brown-black viscous substance	1g 5g
Note: *Limited quantities available*		

Technical Note:

1. Soluble in ether, alcohol, and water.

References:

1. *Eur. J. Inorg. Chem.*, 2001, 2455

45-1660	Rhodium/tetra-n-octylammonium chloride colloid, purified (70-75% Rh) HAZ (7440-16-6) Rh/(C ₈ H ₁₇) ₄ NCl; 2.0 nm ± 0.5 nm; gray pwdr 	250mg 1g
---------	--	-------------

Technical Note:

1. Very soluble in THF, soluble in acetone, slightly soluble in toluene, insoluble in ether.

References:

1. *J. Mol. Catal.*, 1994, 86, 129
2. *Eur. J. Inorg. Chem.*, 2001, 2455
3. *Catalysis and Electrocatalysis at Nanoparticles Surfaces, Chapter 10*, p, 343-377. Marcel Dekker, NY, 2003.
4. *Advanced Catalysts and Nanostructured Materials, Chapter 7*, Academic, Press, San Diego, 1996, 165-196.

Rhodium Nanoparticles - Surfactant and Reactant-Free (Pure),

25ml

Manufactured via Laser Ablation

100ml

Note: Made to order. Manufactured by laser ablation. Store at room temperature (up to 25°C).

Do not freeze. Shelf life 12 months. Sold in collaboration with Particular® for research purposes only.

45-1324	Rhodium nanoparticles, pure, (<20nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-16-6) HAZ grey-brown liq.	
45-1328	Rhodium nanoparticles, pure, (<20nm) in isopropanol at 100mg/L (surfactant and reactant-free) (7440-16-6) HAZ grey-brown liq.	
45-1322	Rhodium nanoparticles, pure, (<20nm) in water at 100mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-16-6) grey-brown liq.	
45-1330	Rhodium nanoparticles, pure, (<20nm) in water at 500mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-16-6) black liq.	

NANOMATERIALS - RUTHENIUM (Elemental Forms)

Ruthenium Nanoparticles - Surfactant and Reactant-Free (Pure),

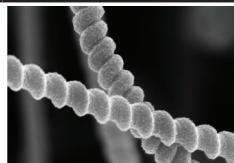
25ml

Manufactured via Laser Ablation

100ml

Note: Made to order. Manufactured by laser ablation. Store at room temperature (up to 25°C).

Do not freeze. Shelf life 12 months. Sold in collaboration with Particular® for research purposes only.


44-2812	Ruthenium nanoparticles, pure, (<20nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-18-8) HAZ grey-brown liq. Note: ***Limited quantities available***	
44-2822	Ruthenium nanoparticles, pure, (50-70nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-18-8) HAZ grey liq. Note: Particle size of 50-70 nm is measured via DLS, colloid may also contain significant fractions of smaller particles. ***Limited quantities available***	

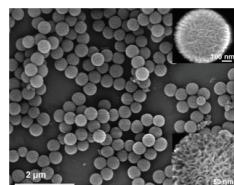
NANOMATERIALS - SILICON (Elemental Forms)

14-0655	Silicon powder (amorphous), min. 97% (7440-21-3) HAZ Si; brown pwdr; SA: >50 m ² /g air sensitive	5g 25g
---------	---	-----------

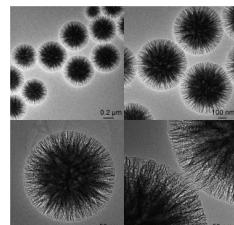
NANOMATERIALS - SILICON (Elemental Forms)

14-0650 HAZ	Si _n powder (nanocrystalline), min. 97% (7440-21-3) Si; brown pwdr.; SA: <20 m ² /g air sensitive	5g 25g
14-6052	Si _n Nanosprings™ coated with zinc oxide and grown on fiber glass substrate (3.5 x 8cm) (7631-86-9) white to beige plate Note: ***Limited quantities available.***	1pc

NANOMATERIALS - SILICON (Compounds)


High Surface Area Silica Nanoparticles (112945-52-5)

Note: This product is under license of patented Technology from King Abdullah University of Science and Technology – KAUST. Patent PCT/IB2010/002421.


14-6100 NEW	High Surface area Silica nanoparticles, large, particle size ~900-1000 nm, surface area ~700 m ² /g, (KCC-1 L1) (112945-52-5) SiO ₂ ; FW: 60.09; white pwdr.; SA: ~700 m ² /g; P.Vol. ~1.4 cm ³ /g Note: Diameter: 900-1000nm	1g 5g
-----------------------	---	----------

Technical Note:

1. Novel fibrous shaped silica nanospheres, denoted as KCC-1 (KAUST Catalysis Center)^[1], have unique physical properties which have never before been reported in silica materials. These nanomaterials have been developed by Prof. J. M. Basset of King Abdullah University of Science and Technology (KAUST). A fibrous surface morphology arranged in three-dimensional structure forms the spheres (Fig. 1). Unlike traditional pore-based silica, these nanospheres possess a fibrous structure that increases accessibility to the available surface area; this in turn, significantly increases the catalytic activity.

These materials exhibit excellent physical properties, including a high surface area, a fibrous surface morphology, good thermal and hydrothermal stabilities and high mechanical stability (Table 1). The fibrous morphology of KCC-1 remains unaffected even after mechanical compression up to 216 MPa pressure. This is superior to the conventional MCM-41 type of silica, which is affected at pressure 86 MPa.^[1]

A range of heterogeneous catalysts, prepared using KCC-1 as a supporting material, have been showing excellent catalytic activity for various transformations of research and industrial importance. As a catalyst support, sorbent or carrier, KCC-1 is able to demonstrate superior activity as compared to regular mesoporous silica materials in energy related processes^[2-3], a variety of organic reactions^[4-7], biomedical applications and drug delivery systems^[8], optoelectronic devices^[9] and many others.

Product #	Category	Grade	Particle Size (nm)	Surface Area (m ² /g)	Pore Volume (cm ³ /g)
14-6100	Large	(KCC-1 L1)	~900-1000	~700	~1.4
14-6110	Large	(KCC-1 L2)	~900-1000	~600	~1.2
14-6120	Large	(KCC-1 L3)	~900-1000	~550	~0.9
14-6200	Medium	(KCC-1 M1)	~400-450	~400	~0.7
14-6210	Medium	(KCC-1 M2)	~300-350	~600	~0.6
14-6300	Small	(KCC-1 S1)	~130-190	~380	~0.8
14-6310	Small	(KCC-1 S2)	~40-50	~520	~1.3

References:

1. *Angew. Chem. Int. Ed.* **2010**, *49*, 9652
2. *Chem. Mater.* **2015**, *27*, 8237
3. *ACS Catalysis.* **2016**, *6*, 2770
4. *ChemSusChem* **2012**, *5*, 85
5. *Green Chem.*, **2016**, *18*, 5890
6. *Angew. Chem. Int. Ed.* **2011**, *50*, 2747
7. *RSC Adv.*, **2017**, *7*, 24885
8. *Langmuir* **2014**, *30*, 10886
9. *J. Mater. Chem. B*, **2015**, *3*, 3201

NANOMATERIALS - SILICON (Compounds)

14-6110	High Surface area Silica nanoparticles, large, particle size ~900-1000 nm, surface area ~600 m ² /g, (KCC-1 L2) (112945-52-5) SiO ₂ ; FW: 60.09; white pwdr.; SA: ~600 m ² /g; P.Vol. ~1.20 cm ³ /g	1g 5g
Note: Diameter: ~900-1000nm		

Technical Note:

1. See 14-6100 (page 52)

14-6120	High Surface area Silica nanoparticles, large, particle size ~900-1000 nm, surface area ~550 m ² /g (KCC-1 L3) (112945-52-5) SiO ₂ ; FW: 60.09; white pwdr.; SA: ~550 m ² /g; P.Vol. ~0.97 cm ³ /g	1g 5g
Note: Diameter: ~900-1000nm		

Technical Note:

1. See 14-6100 (page 52)

14-6200	High Surface area Silica nanoparticles, medium, particle size ~400-450 nm, surface area ~400 m ² /g, (KCC-1 M1) (112945-52-5) SiO ₂ ; FW: 60.09; white pwdr.; SA: ~400 m ² /g; P.Vol. ~0.7 cm ³ /g	1g 5g
Note: Diameter: ~400-450nm		

Technical Note:

1. See 14-6100 (page 52)

14-6210	High Surface area Silica nanoparticles, medium, particle size ~300-350 nm, surface area ~600 m ² /g, (KCC-1 M2) (112945-52-5) SiO ₂ ; FW: 60.09; white pwdr.; SA: ~600 m ² /g; P.Vol. ~0.6 cm ³ /g	1g 5g
Note: Diameter: ~300-350nm		

Technical Note:

1. See 14-6100 (page 52)

14-6300	High Surface area Silica nanoparticles, small, particle size ~130-190 nm, surface area ~380 m ² /g, (KCC-1 S1) (112945-52-5) SiO ₂ ; FW: 60.09; white to beige pwdr.; SA: ~380 m ² /g; P.Vol. ~0.8 cm ³ /g	1g 5g
Note: Diameter: ~130-190nm		

Technical Note:

1. See 14-6100 (page 52)

14-6310	High Surface area Silica nanoparticles, small, particle size ~40-50 nm, surface area ~520 m ² /g, (KCC-1 S2) (112945-52-5) SiO ₂ ; FW: 60.09; white to beige pwdr.; SA: 520 m ² /g; P.Vol. 1.3 cm ³ /g	250mg 1g 5g
Note: Diameter: 40-50 nm		

Technical Note:

1. See 14-6100 (page 52)

96-5050	High Surface Area Silica Nanoparticles Kit See page 63
---------	---

NANOMATERIALS - SILVER (Elemental Forms)

Silver Nanoparticles - in citrate buffer

light sensitive, (store cold)

Note: Store away from direct sunlight at 4°C.

Do not freeze. Shelf life 6 months.

20ml
100ml

Technical Note:

Product #	Diameter	Color and form	Absorption max
47-0620	10nm	yellow liq.	390-400nm
47-0623	20nm	yellow liq.	405nm
47-0626	30nm	yellow liq.	410nm
47-0630	40nm	yellow liq.	416nm
47-0633*	50nm	yellow liq.	425nm
47-0635	60nm	yellow liq.	430nm
47-0638	80nm	yellow liq.	457nm
47-0640	100nm	yellow liq.	490nm

NANOMATERIALS - SILVER (Elemental Forms)

Silver Nanoparticles - Reactant-Free

light sensitive, (store cold)

20ml

100ml

Note: Store away from direct sunlight at 4°C. Do not freeze. Shelf life 6 months.

Technical Note:

Product #	Diameter	Color and form	Absorption max
47-0655	10nm	yellow liq.	390-400nm
47-0658	20nm	yellow liq.	405nm
47-0660	30nm	yellow liq.	410nm
47-0663	40nm	yellow liq.	416nm
47-0665	50nm	yellow liq.	425nm
47-0668	60nm	yellow liq.	430nm
47-0670	80nm	yellow liq.	457nm
47-0672	100nm	yellow liq.	490nm

Silver Nanoparticles - Surfactant and Reactant-Free (Pure),

Manufactured via Laser Ablation

25ml

100ml

Note: Made to order. Manufactured by laser ablation. Store at room temperature (up to 25°C).

Do not freeze. Shelf life 12 months. Sold in collaboration with Particular® for research purposes only.

47-0712 HAZ	Silver nanoparticles, pure, (<20nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-22-4) yellowish-brown liq.	
47-0710	Silver nanoparticles, pure, (<20nm) in water at 100mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-22-4) yellow liq.	
47-0718	Silver nanoparticles, pure, (<20nm) in water at 500mg/L (surfactant and reactant-free, stabilized with < 0.01 mmol/l of citrate) (7440-22-4) yellowish-grey liq.	
47-0722 HAZ	Silver nanoparticles, pure, (50-70nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-22-4) yellowish-brown liq. Particle size of 50-70 nm is measured via DLS, colloid may also contain significant fractions of smaller particles. ***Limited quantities available***	

NANOMATERIALS - TIN (Compounds)

50-0518 Tin(IV) oxide, nanoparticle (30-60 nm), (99.7%-Sn) (18282-10-5)

25g

SnO₂; FW: 150.69; white pwdr.; SA: 18.55 m²/g; m.p. 1630°; d. 6.95

100g

NANOMATERIALS - TITANIUM (Elemental Forms)

Titanium Nanoparticles - Surfactant and Reactant-Free (Pure),

Manufactured via Laser Ablation

Note: Made to order. Manufactured by laser ablation. Store at room temperature (up to 25°C). Do not freeze. Shelf life 12 months. Sold in collaboration with Particular® for research purposes only.

22-0192 HAZ	Titanium nanoparticles, pure, (<20nm) in acetone at 100mg/L (surfactant and reactant-free) (7440-32-6) grey liq. Note: ***Limited quantities available***	25ml 100ml
22-0198	Titanium nanoparticles, pure, (50-70nm) in ethylene glycol at 100mg/L (surfactant and reactant-free) (7440-32-6) grey liq. Note: Particle size of 50-70 nm is measured via DLS, colloid may also contain significant fractions of smaller particles. ***Limited quantities available***	25ml

NANOMATERIALS - TITANIUM (Elemental Forms)

22-0203 HAZ	Titanium nanoparticles, pure, (50-70nm) in isopropanol at 100 mg/L (surfactant and reactant-free) (7440-32-6) grey liq. Note: Particle size of 50-70 nm is measured via DLS, colloid may also contain significant fractions of smaller particles. ***Limited quantities available***	100ml
----------------	--	-------

NANOMATERIALS - TITANIUM (Compounds)

22-1400	Titanium(IV) oxide nanopowder Anatase (1317-80-2) TiO ₂ ; FW: 79.90; white pwdr.	5g 25g
---------	--	-----------

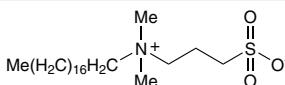
Specific Surface Area (BET): ≥500 m²/g; **True Density:** 3.7 g/cc; **Crystallite Size:** Amorphous; **Mean Aggregate Size:** 5 μm; **Average Pore Diameter:** 32Å; **Loss on Ignition:** ≤12%; **Total Pore Volume:** ≥0.4 cc/g; **Moisture Content:** ≤4%; **Bulk Density:** 0.6 g/cc; **Ti Content (Based on Metal):**> 99.999%

NANOMATERIALS - ZINC (Compounds)

30-1405	Zinc oxide nanopowder (1314-13-2) ZnO; FW: 81.37; white pwdr.	25g 100g
---------	--	-------------

NANOMATERIALS - OTHER

96-0900	Enzymatic Flow Reactor (2.5 inch tube x 0.25 inch I.D.)	1ea
---------	--	-----


Technical Note:

The EFR is a 2.5 inch long, 0.25 inch i.d. tube that is packed with stainless steel mesh coated with a total of approximately 50mg of silica nanosprings.

The surfaces of these nanosprings are functionalized with free sulphydryl groups at the end of a three carbon chain that can react with an appropriately activated enzyme.

NANOMATERIALS (Surfactants & Ligands for Nano Synthesis)

07-0440 HAZ	L-Cysteine ethyl ester hydrochloride, 98% (868-59-7) HSCH ₂ CH(NH ₂)COOC ₂ H ₅ ·HCl; FW: 185.67; white solid; m.p. 123-125° Note: Surfactant for nanomaterial synthesis.	25g 100g
02-5043	3-(Decyldimethylammonio)propanesulfonate (Sulfobetaine 10) (15163-36-7) [CH ₃ (CH ₂) ₉ N] ⁺ [(CH ₃) ₂ (CH ₂) ₃ SO ₃] ⁻ ; FW: 307.49; white solid Note: Surfactant for nanomaterial synthesis.	1g 5g
07-1677	Didodecylamine, min. 97% (3007-31-6) [CH ₃ (CH ₂) ₁₀ CH ₂ NH; FW: 353.67; white xtl. Note: Surfactant for nanomaterial synthesis.	1g
02-5055	N-Dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (Sulfobetaine 12) (14933-08-5) CH ₃ (CH ₂) ₁₁ N(CH ₃) ₂ CH ₂ CH ₂ CH ₂ SO ₃ ⁻ ; FW: 335.55; white pwdr. Note: Surfactant for nanomaterial synthesis.	10g 50g
02-5045 HAZ	Hexadecyltrimethylammonium bromide, 99+% CTAB (57-09-0) [CH ₃ (CH ₂) ₁₅ N(CH ₃) ₃] ⁺ Br ⁻ ; FW: 364.45; white solid; m.p. 248-251° Note: Surfactant for nanomaterial synthesis.	50g 250g
03-1180	Lithium dodecyl sulfate, min. 98% (2044-56-6) CH ₃ (CH ₂) ₁₁ OSO ₃ ⁻ Li ⁺ ; FW: 272.33; white solid Note: Surfactant for nanomaterial synthesis.	1g 5g
02-5056	N-Octyldecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (Sulfobetaine 18) (13177-41-8) Me(CH ₂) ₇ N(Me) ₂ (CH ₂) ₃ SO ₃ FW: 419.70; white solid Note: Surfactant for nanomaterial synthesis.	5g 25g

NANOMATERIALS (Surfactants & Ligands for Nano Synthesis)

06-4010	Oilic acid, 99% (112-80-1) CH ₃ (CH ₂) ₇ =CH(CH ₂) ₇ COOH; FW: 282.46; liq.; m.p. 13°; b.p. 194-195° (1.2mm); d. 0.89 Note: Surfactant for nanomaterial synthesis.	5g 25g
07-1665	Oleylamine, min. 70% (112-90-3) CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₂ NH ₂ ; FW: 267.49; colorless liq.; m.p. 18-26°; b.p. 348-350°; d. 0.813 Note: Surfactant for nanomaterial synthesis.	5g 25g
07-1668	Oleylamine, min. 95% (112-90-3) CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CH ₂ NH ₂ ; FW: 267.49; colorless liq.; m.p. 18-26°; b.p. 348-350°; d. 0.813 Note: Surfactant for nanomaterial synthesis.	5g 25g
09-5950	Perfluorotetradecanoic acid, min. 97% (376-06-7) CF ₃ (CF ₂) ₁₂ COOH; FW: 714.11; white solid; m.p. 130-135°; b.p. 270° (740mm); d. 0.89 Note: Surfactant for nanomaterial synthesis.	1g
06-5075	Polyethylene glycol dodecyl ether (Brij™ 35) (9002-92-0) CH ₃ (CH ₂) ₁₀ CH ₂ (OCH ₂ CH ₂) _n OH (n~23); FW: ~1199.54; liq. (white solid @ room temperature); m.p. 41-45° Note: Surfactant for nanomaterial synthesis.	250g 1kg
08-1650	Polyethylene glycol sorbitan monolaurate (TWEEN® 20) (9005-64-5) FW: ~1228; viscous liq.; d. 1.095 Note: Surfactant for nanomaterial synthesis.	5g 25g
07-1815	Polyvinylpyrrolidone (average mol. Wt. 10,000) PVP10 (9003-39-8) (C ₆ H ₉ NO)n; white pwdr. Note: Surfactant for nanomaterial synthesis.	50g 250g
07-1817	Polyvinylpyrrolidone (average mol.wt. 40,000) PVP40 (9003-39-8) (C ₆ H ₉ NO)n; white pwdr. Note: Surfactant for nanomaterial synthesis.	50g 250g
11-2750	Sodium dioctylsulfosuccinate (AOT), min. 95% (577-11-7) C ₂₀ H ₃₇ N ₉ O ₇ S; FW: 444.56; white pwdr.; m.p. 176° Note: Surfactant for nanomaterial synthesis.	50g 250g
11-1140	Sodium dodecylsulfate, 98+% (151-21-3) CH ₃ (CH ₂) ₁₁ OSO ₃ Na; FW: 288.38; white xtl.; m.p. 204-207°	25g 100g
11-1285	Sodium dodecylsulfate, min. 99% (151-21-3) CH ₃ (CH ₂) ₁₁ OSO ₃ Na ⁺ ; FW: 288.38; white solid; m.p. 204-207° Note: Surfactant for nanomaterial synthesis.	50g 250g
11-1280	Sodium oleate, 99% (143-19-1) CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ COO ⁺ Na ⁺ ; FW: 304.44; white pwdr.; m.p. 232-235° Note: Surfactant for nanomaterial synthesis.	5g 25g
02-5065	Tetramethylammonium hydroxide pentahydrate, min. 95% (10424-65-4) HAZ (CH ₃) ₄ N(OH) ⁺ ·5H ₂ O; FW: 181.23; white solid; m.p. 67-70° Note: Surfactant for nanomaterial synthesis.	10g 50g

NANOMATERIALS (Surfactants & Ligands for Nano Synthesis)

02-5040	Tetraoctylammonium chloride, min. 97% (3125-07-3) [CH ₃ (CH ₂) ₇] ₄ N ⁺ Cl ⁻ ; FW: 502.34; white xtl. Note: Surfactant for nanomaterial synthesis.	1g
08-2180	DL- α -Tocopherol methoxypolyethylene glycol succinate solution (2 wt% in water) TPGS-750-M C ₆₈ H ₁₁₇ O ₂₁ ; FW: 1246.62; colorless liq. Note: Surfactant for nanomaterial synthesis.	10ml 50ml
Technical Notes:		
1. Visit strem.com for full technical note.		
15-6655	Tri-n-octylphosphine, min. 97% TOP (4731-53-7) HAZ (C ₈ H ₁₇) ₃ P; FW: 370.60; colorless to pale yellow liq.; m.p. 30°; b.p. 175°/0.3mm; f.p. 280°F; d. 0.83 <i>air sensitive</i> Note: Surfactant for nanomaterial synthesis.	25g 100g 500g
15-6660	Trioctylphosphine oxide, min. 90% TOPO (78-50-2) HAZ (n-C ₈ H ₁₇) ₃ PO; FW: 386.65; off-white xtl.; m.p. 51-52°; f.p. >230°F; d. 0.88 <i>hygroscopic</i> Note: Surfactant for nanomaterial synthesis.	100g 500g
15-6661	Trioctylphosphine oxide, 99% TOPO (78-50-2) HAZ (n-C ₈ H ₁₇) ₃ PO; FW: 386.65; white to off-white solid; m.p. 51-52°; f.p. >230°F; d. 0.88 <i>hygroscopic</i> Note: Surfactant for nanomaterial synthesis.	25g 100g
15-6375	Tris(3-hydroxypropyl)phosphine, min. 80% amp (4706-17-6) HAZ (HOC ₃ H ₆) ₃ P; FW: 208.24; viscous liq. <i>air sensitive</i> Note: Surfactant for nanomaterial synthesis.	2g 10g 50g

KITS - CADMIUM SELENIDE StremDots™ QUANTUM DOT (CdSe core) KIT

96-0800 Cadmium selenide StremDots™ quantum dot (CdSe core) kit,
HAZ 50µmol/L in hexanes, 525-625nm peak emissions
Components also available for individual sale.
Contains the following:

48-1011	Cadmium selenide StremDots™ quantum dot (CdSe core), 50µmol/L in hexanes, 525nm peak emission (1306-24-7)	5ml	See page 22
48-1017	Cadmium selenide StremDots™ quantum dot (CdSe core), 50µmol/L in hexanes, 550nm peak emission (1306-24-7)	5ml	See page 22
48-1023	Cadmium selenide StremDots™ quantum dot (CdSe core), 50µmol/L in hexanes, 575nm peak emission (1306-24-7)	5ml	See page 22
48-1030	Cadmium selenide StremDots™ quantum dot (CdSe core), 50µmol/L in hexanes, 600nm peak emission (1306-24-7)	5ml	See page 22
48-1035	Cadmium selenide StremDots™ quantum dot (CdSe core), 50µmol/L in hexanes, 625nm peak emission (1306-24-7)	5ml	See page 22

Item #	Peak Emission	Particle size (diameter)	Quantum Yield
48-1011	525nm	2.8nm	>20%
48-1017	550nm	3.5nm	>10%
48-1023	575nm	3.9nm	>10%
48-1030	600nm	4.7nm	>20%
48-1035	625nm	5.3nm	>20%

Kit contains 5ml of each of the above 5 products. Ligand capping agent oleylamine. Stable in dispersions > 6 months.

*Particle size reported excludes ligand capping agent. All sizes determined by TEM.

† Available at nanoparticle concentration of 50µmol per liter.

KITS - CADMIUM SELENIDE/CADMUM SULFIDE StremDots™ QUANTUM ROD KIT

96-0813 Cadmium selenide/cadmium sulfide StremDots™ quantum
HAZ rod kit (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes,
560nm, 590nm, 620nm peak emissions
Components also available for individual sale.
Contains the following:

48-1053	Cadmium selenide/cadmium sulfide StremDots™ quantum rod (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes, 560nm peak emission (1306-24-7)	0.5ml	See page 22
48-1056	Cadmium selenide/cadmium sulfide StremDots™ quantum rod (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes, 590nm peak emission (1306-24-7)	0.5ml	See page 22
48-1059	Cadmium selenide/cadmium sulfide StremDots™ quantum rod (CdSe/CdS elongated core/shell), 5 mg/ml in hexanes, 620nm peak emission (1306-24-7)	0.5ml	See page 22

KITS - GOLD GEMINI NANORODS KIT (CTAB FREE)

96-1549

Gold Gemini Nanorods Kit, CTAB Free (Wavelength 650-850 nm)

Rods are synthesized without CTAB. Store at 4°C - 8°C. Do not freeze. At storage temperature the product may appear opaque. Follow the procedure for re-dispersing surfactants as described in the technical note. Complete this process before use to dissolve precipitated stabilizer. Sold in collaboration with SONA Nanotech for research purposes only. Components also available for individual sale.

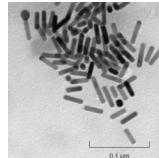
Contains the following:

79-7010	Gold Gemini Nanorods, CTAB Free (Wavelength 650 nm) (7440-57-5)	5ml	See page 42
79-7015	Gold Gemini Nanorods, CTAB Free (Wavelength 700 nm) (7440-57-5)	5ml	See page 42
79-7020	Gold Gemini Nanorods, CTAB Free (Wavelength 750 nm) (7440-57-5)	5ml	See page 42
79-7025	Gold Gemini Nanorods, CTAB Free (Wavelength 800 nm) (7440-57-5)	5ml	See page 42
79-7030	Gold Gemini Nanorods, CTAB Free (Wavelength 850 nm) (7440-57-5)	5ml	See page 42

Item #	LPSR Maximum (nm)	Length (nm)	Width (nm)	Aspect Ratio	Color & Form
79-7010	640 - 670	25 - 31	13 - 18	1.7 - 1.9	violet liq.
79-7015	685 - 715	37 - 43	13 - 18	2.4 - 2.8	blue liq.
79-7020	735 - 765	37 - 44	10 - 13	3.4 - 3.7	red-purple liq.
79-7025	785 - 815	40 - 50	10 - 13	3.8 - 4.1	red-orange liq.
79-7030	835 - 865	48 - 55	9 - 12	4.6 - 5.3	maroon-purple liq.

Concentration: >30 µg/ml

pH: 5.5 - 7.5


Stabilizer: Amphiphilic Agents

Solvent: Stabilized with amphiphilic agents in conductivity grade

water (18.0 MΩ cm⁻¹)

Optical Density: 1.0 - 1.2

Shelf Life: 12 months

KITS - GOLD NANOPARTICLES KIT

96-1547

Gold Nanoparticles Kit (5nm-40nm diameter, OD 1, stabilized suspension citrate buffer)

Components also available for individual sale.

Contains the following:

79-0182	Gold Nanoparticles (5nm, 1 OD, supplied in 0.1mM stabilizing surfactant, 515-520nm abs. max.) (7440-57-5)	25ml	See page 38
79-0210	Gold Nanoparticles (10nm, 1 OD, supplied in 0.1mM stabilizing surfactant, 515-520nm abs. max.) (7440-57-5)	25ml	See page 38
79-0212	Gold Nanoparticles (15nm, 1 OD, supplied in 0.1mM stabilizing surfactant, 520nm abs. max.) (7440-57-5)	25ml	See page 38
79-0214	Gold Nanoparticles (20nm, 1 OD, supplied in 0.1mM stabilizing surfactant, 524nm abs. max.) (7440-57-5)	25ml	See page 38
79-0216	Gold Nanoparticles (30nm, 1 OD, supplied in 0.1mM stabilizing surfactant, 526nm abs. max.) (7440-57-5)	25ml	See page 38
79-0218	Gold Nanoparticles (40nm, 1 OD, supplied in 0.1mM stabilizing surfactant, 530nm abs. max.) (7440-57-5)	25ml	See page 38

KITS - GOLD NANOPARTICLES KIT (Reactant-Free)

96-1545	Gold Nanoparticles Kit, Reactant-Free (5nm-40nm diameter, OD 1, suspension in phosphate-buffered saline, 515-530nm abs. max.) Components also available for individual sale. Contains the following:		
79-0180	Gold Nanoparticles (5 nm diameter, 1 OD, stabilized suspension in phosphate-buffered saline, 515-520 nm abs. max.) reactant free (7440-57-5)	25ml	See page 37
79-0184	Gold Nanoparticles (10nm diameter, 1 OD, stabilized suspension in phosphate-buffered saline, 520nm abs. max.) reactant free (7440-57-5)	25ml	See page 37
79-0186	Gold Nanoparticles (15nm diameter, 1 OD, stabilized suspension in phosphate-buffered saline, 520nm abs. max.) reactant free (7440-57-5)	25ml	See page 37
79-0188	Gold Nanoparticles (20nm diameter, 1 OD, stabilized suspension in phosphate-buffered saline, 524nm abs. max.) reactant free (7440-57-5)	25ml	See page 37
79-0190	Gold Nanoparticles (30nm diameter, 1 OD, stabilized suspension in phosphate-buffered saline, 526nm abs. max.) reactant free (7440-57-5)	25ml	See page 37
79-0192	Gold Nanoparticles (40nm diameter, 1 OD, stabilized suspension in phosphate-buffered saline, 530nm abs. max.) reactant free (7440-57-5)	25ml	See page 37

KITS - GOLD NANORODS KIT (Axial Diameter-25nm, Wavelength 550-700nm)

96-1530	Gold Nanorods Kit (Axial Diameter - 25 nm, wavelength 550-700 nm) Components also available for individual sale. Contains the following:		
79-6000	Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 550 nm) (7440-57-5)	25ml	See page 41
79-6005	Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 600 nm) (7440-57-5)	25ml	See page 41
79-6010	Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 650 nm) (7440-57-5)	25ml	See page 41
79-6015	Gold Nanorods (Axial Diameter - 25 nm) (Wavelength 700 nm) (7440-57-5)	25ml	See page 41

KITS - GOLD NANORODS KIT (Axial Diameter-10nm, Wavelength 700-808nm)

96-1535	Gold Nanorods Kit (Axial Diameter - 10 nm, wavelength 700-808 nm) Components also available for individual sale. Contains the following:		
79-6020	Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 700 nm) (7440-57-5)	25ml	See page 41
79-6025	Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 750 nm) (7440-57-5)	25ml	See page 41
79-6030	Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 780 nm) (7440-57-5)	25ml	See page 41
79-6035	Gold Nanorods (Axial Diameter - 10 nm) (Wavelength 808 nm) (7440-57-5)	25ml	See page 41

KITS - GOLD NANOSPHERES KIT

96-1540 Gold Nanospheres Kit (30-90 nm)

Components also available for individual sale.

Contains the following:

79-6040	Spherical Gold Nanoparticles (30 nm) (7440-57-5)	25ml	See page 39
79-6045	Spherical Gold Nanoparticles (50 nm) (7440-57-5)	25ml	See page 39
79-6050	Spherical Gold Nanoparticles (70 nm) (7440-57-5)	25ml	See page 39
79-6055	Spherical Gold Nanoparticles (90 nm) (7440-57-5)	25ml	See page 39

KITS - GRAPHENE QUANTUM DOTS (GQDs) MASTER KIT

96-7410 Graphene Quantum Dots (GQDs) Master Kit

Sold in collaboration with Dotz Nano Ltd. for research purposes

only. Suggested use within 6 months of purchase. Do not freeze.

Store in DARK.

Components also available for individual sale.

Contains the following:

06-0330	Graphene Quantum Dots (GQDs), Aqua-Green Luminescent (1034343-98-0)	100mg	See page 31
06-0332	Graphene Quantum Dots (GQDs) in water, Aqua-Green Luminescent (1034343-98-0)	100ml	See page 31
06-0334	Graphene Quantum Dots (GQDs), Blue Luminescent (1034343-98-0)	100mg	See page 31
06-0336	Graphene Quantum Dots (GQDs) in water, Blue Luminescent (1034343-98-0)	100ml	See page 31
06-0340	Graphene Quantum Dots (GQDs) in water, Cyan Luminescent (1034343-98-0)	100ml	See page 31

Item #	Photoluminescence			
	QY* *	λ_{max} * *	Max emission	FWHM * *
06-0330 / 06-0332	>17%	485 nm	525 nm	70 nm
06-0334 / 06-0336	>65%	350 nm	445 nm	65 nm
06-0340	>25%	420 nm	490 nm	80 nm

Abbreviations

QY*	Quantum Yield
λ_{max}	Maximum excitation wavelength
FWHM	Full width at half maximum

KITS - GRAPHENE QUANTUM DOTS (GQDs) MINI KIT (Powders)

96-7425 Graphene Quantum Dots (GQDs) Mini Kit (Powders)

Sold in collaboration with Dotz Nano Ltd. for research purposes only. Suggested use within 6 months of purchase. Do not freeze. Store in DARK. Components also available for individual sale. Contains the following:

06-0330	Graphene Quantum Dots (GQDs), Aqua-Green Luminescent (1034343-98-0)	100mg	See page 31
06-0334	Graphene Quantum Dots (GQDs), Blue Luminescent (1034343-98-0)	100mg	See page 31

Item #	Color & Form	Photoluminescence			
		QY* *	λ max *	Max emission	FWHM *
06-0330	dark red-brown pwdr.	>17%	485 nm	525 nm	70 nm
06-0334	dark brown pwdr.	>65%	350 nm	445 nm	65 nm

Particle diameter: <5 nm
Topographic height: 1.0 - 2.0 nm
Abbreviations: QY* = Quantum Yield; λ max = Maximum excitation wavelength; FWHM = Full width at half maximum

KITS - GRAPHENE QUANTUM DOTS (GQDs) MINI KIT (Liquids)

96-7420 Graphene Quantum Dots in water (GQDs) Mini Kit (Liquids)

Sold in collaboration with Dotz Nano Ltd. for research purposes only. Suggested use within 6 months of purchase. Do not freeze. Store in DARK. Components also available for individual sale. Contains the following:

06-0332	Graphene Quantum Dots (GQDs) in water, Aqua-Green Luminescent (1034343-98-0)	100ml	See page 31
06-0336	Graphene Quantum Dots (GQDs) in water, Blue Luminescent (1034343-98-0)	100ml	See page 31
06-0340	Graphene Quantum Dots (GQDs) in water, Cyan Luminescent (1034343-98-0)	100ml	See page 31

Item #	Color & Form	Photoluminescence			
		QY* *	λ max *	Max emission	FWHM *
06-0332	cloudy orange liq.	>17%	485 nm	525 nm	70 nm
06-0336	cloudy colorless liq.	>65%	350 nm	445 nm	65 nm
06-0340	cloudy brown liq.	>25%	420 nm	490 nm	80 nm

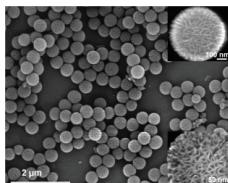
Particle diameter: <5 nm
Topographic height: 1.0 - 2.0 nm
Concentration: 1mg/ml
Abbreviations: QY* = Quantum Yield; λ max = Maximum excitation wavelength; FWHM = Full width at half maximum

KITS - HIGH SURFACE AREA SILICAN NANOPARTICLES KIT

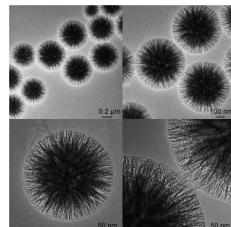
96-5050

High Surface Area Silica Nanoparticles Kit

NEW


These products are under license of patented Technology from King Abdullah University of Science and Technology – KAUST. Patent PCT/IB2010/002421.

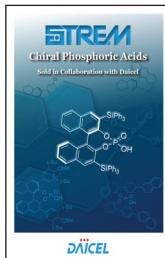
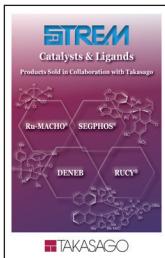
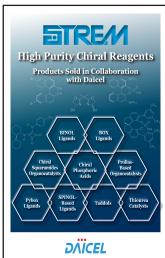
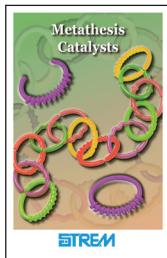
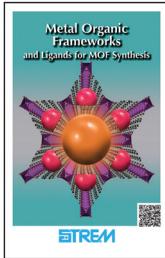
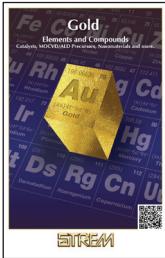
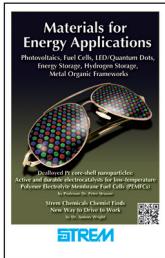
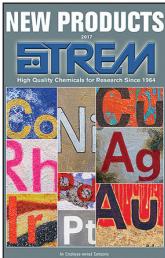
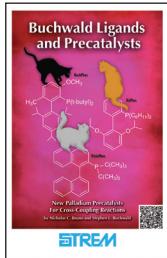
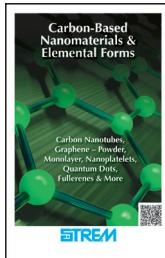
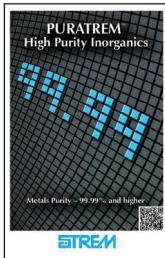
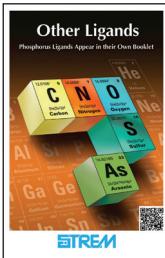
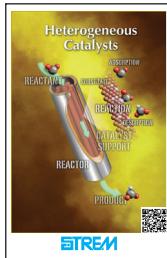
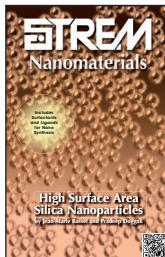
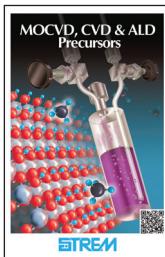
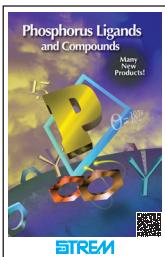
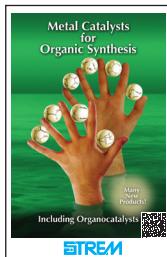
Components also available for individual sale. Contains the following:


14-6100	High Surface area Silica nanoparticles, large, particle size ~900-1000 nm, surface area ~700 m ² /g, (KCC-1 L1) (112945-52-5)	1g	See page 52
14-6110	High Surface area Silica nanoparticles, large, particle size ~900-1000 nm, surface area ~600 m ² /g, (KCC-1 L2) (112945-52-5)	1g	See page 53
14-6120	High Surface area Silica nanoparticles, large, particle size ~900-1000 nm, surface area ~550 m ² /g (KCC-1 L3) (112945-52-5)	1g	See page 53
14-6200	High Surface area Silica nanoparticles, medium, particle size ~400-450 nm, surface area ~400 m ² /g, (KCC-1 M1) (112945-52-5)	1g	See page 53
14-6210	High Surface area Silica nanoparticles, medium, particle size ~300-350 nm, surface area ~600 m ² /g, (KCC-1 M2) (112945-52-5)	1g	See page 53
14-6300	High Surface area Silica nanoparticles, small, particle size ~130-190 nm, surface area ~380 m ² /g, (KCC-1 S1) (112945-52-5)	1g	See page 53
14-6310	High Surface area Silica nanoparticles, small, particle size ~40-50 nm, surface area ~520 m ² /g, (KCC-1 S2) (112945-52-5)	250mg	See page 53

Technical Note:

1. Novel fibrous shaped silica nanospheres, denoted as KCC-1 (KAUST Catalysis Center)^[1], have unique physical properties which have never before been reported in silica materials. These nanomaterials have been developed by Prof. J. M. Basset of King Abdullah University of Science and Technology (KAUST). A fibrous surface morphology arranged in three-dimensional structure forms the spheres (Fig. 1). Unlike traditional pore-based silica, these nanospheres possess a fibrous structure that increases accessibility to the available surface area; this in turn, significantly increases the catalytic activity.

These materials exhibit excellent physical properties, including a high surface area, a fibrous surface morphology, good thermal and hydrothermal stabilities and high mechanical stability (Table 1). The fibrous morphology of KCC-1 remains unaffected even after mechanical compression up to 216 MPa pressure. This is superior to the conventional MCM-41 type of silica, which is affected at pressure 86 MPa.^[1]


















A range of heterogeneous catalysts, prepared using KCC-1 as a supporting material, have been showing excellent catalytic activity for various transformations of research and industrial importance. As a catalyst support, sorbent or carrier, KCC-1 is able to demonstrate superior activity as compared to regular mesoporous silica materials in energy related processes^[2-3], a variety of organic reactions^[4-7], biomedical applications and drug delivery systems^[8], optoelectronic devices^[9] and many others.

Product #	Category	Grade	Particle Size (nm)	Surface Area (m ² /g)	Pore Volume (cm ³ /g)
14-6100	Large	(KCC-1 L1)	~900-1000	~700	~1.4
14-6110	Large	(KCC-1 L2)	~900-1000	~600	~1.2
14-6120	Large	(KCC-1 L3)	~900-1000	~550	~0.9
14-6200	Medium	(KCC-1 M1)	~400-450	~400	~0.7
14-6210	Medium	(KCC-1 M2)	~300-350	~600	~0.6
14-6300	Small	(KCC-1 S1)	~130-190	~380	~0.8
14-6310	Small	(KCC-1 S2)	~40-50	~520	~1.3

References:

1. *Angew. Chem. Int. Ed.* **2010**, *49*, 9652
2. *Chem. Mater.* **2015**, *27*, 8237
3. *ACS Catalysis.* **2016**, *6*, 2770
4. *ChemSusChem* **2012**, *5*, 85
5. *Green Chem.* **2016**, *18*, 5890
6. *Angew. Chem. Int. Ed.* **2011**, *50*, 2747
7. *RSC Adv.*, **2017**, *7*, 24885
8. *Langmuir* **2014**, *30*, 10886
9. *J. Mater. Chem. B*, **2015**, *3*, 3201

Available Booklets

Visit strem.com for new product announcements.

The Strem Product Line

OUR LINE OF RESEARCH CHEMICALS

Biocatalysts & Organocatalysts	Custom Synthesis
Electronic Grade Chemicals	cGMP Facilities
Fullerenes	FDA Inspected
High Purity Inorganics & Alkali Metals	Drug Master Files
Ionic Liquids	Complete Documentation
Ligands & Chiral Ligands	
Metal Acetates & Carbonates	
Metal Alkoxides & beta-Diketonates	
Metal Alkyls & Alkylamides	
Metal Carbonyls & Derivatives	
Metal Catalysts & Chiral Catalysts	
Metal Foils, Wires, Powders & Elements	
Metal Halides, Hydrides & Deuterides	
Metal Oxides, Nitrates, Chalcogenides	
Metal Scavengers	
Metallocenes	
Nanomaterials	
Organofluorines	
Organometallics	
Organophosphines & Arsines	
Porphines & Phthalocyanines	
Precious Metal & Rare Earth Chemicals	
Volatile Precursors for MOCVD, CVD & ALD	

Strem Chemicals, Inc.

7 Mulliken Way
Dexter Industrial Park
Newburyport, MA 01950-4098
U.S.A.

Office Tel: (978) 499-1600
Office Fax: (978) 465-3104

Toll-free (U.S. & Canada)
Tel: (800) 647-8736
Fax: (800) 517-8736

Email: info@strem.com
www.strem.com

Strem Chemicals, Inc.

15, rue de l'Atome
Zone Industrielle
F-67800 BISCHHEIM (France)
Tel.: +33 (0) 3 88 62 52 60
Fax: +33 (0) 3 88 62 26 81
Email: info.europe@strem.com

Strem Chemicals, Inc.

Postfach 1215
D-77672 KEHL, Germany
Tel.: +49 (0) 7851 75879
Fax: +33 (0) 3 88 62 26 81
Email: info.europe@strem.com

Strem Chemicals UK, Ltd.

An Independent Distributor
of Strem Chemicals Products
Newton Hall, Town Street
Newton, Cambridge, CB22 7ZE, UK
Tel.: +44 (0)1223 873 028
Fax: +44 (0)1223 870 207
Email: enquiries@strem.co.uk

